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ANNOTATION

This monograph analyzes the questions involved in the numer~
ical application of one new method for solving boundary value
problems — the method of functional equations — and derives the

proper general purpose programs.
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INTRODUCTION

Many important problems in natural science can be reduced to so-called
boundary value problems. Development of general methods for solving these
problems and investigation of the total automation of their approximate solu-
rion on general purpose computers are problems of paramount significance. 1In
the Department of Numerical Methods of the Computer Center, Academy of Sciences,
Georgian SSSR under the direction of V.D. Kupradze, a general approximate
method was developed for solving boundary value problems. In the present
publication this method is discussed relative to the first internal boundary
value problem of the theory of harmonic functions. The general purpose pro-
grams cited at the end of this publication make it possible to find solutions
to the external Dirichlet boundary value problems for ellipsoidal regions on
the high speed electronic computer BESM-2. These problems arise in computing
gravity, magnetic, electric and heat fields, in solving problems in hydrody-
namics of an ideal fluid, in solving certain problems in the theory of

elasticity, etc.

In 1961, at a seminar held at the Computer Center of the Academy of Sciences,
Georgian S8R, V. D. Kupradze indicated the possiblity of finding an approxi-
mate solution to boundary value problems with the aid of integral Expressions
{5.1) and (5.2) by replacing them with quadrature formulas. Solution to
numerous examples carried out by N.A. Papunashvili showed that this approaéh
to the approximate solution of boundary value problems (in Reference [3], it
was called the second approach) leads to the very poorly stipulated systems
of limear equations. In .several instances an increase in the number of
points in the quadrature formula leads to a deterioration of the final
results. This is due to the fact that (5.2) is a functional equafion of the

first sort, and that its approximate solution is an improper problem. A



special seminar was held to discuss the questions of justifying and approving
this method; at this seminar a new method was developed and justified for an
approximate solution to the boundary value problems that is also based on
Expressions (5.1) and (5.2) (Reference [3], calls this the first approach).

The results obtained at this seminar are discussed in Reference [1-3].

Initially the present publication was regarded as a collection of general-
purpose programs, instructions for them and numerical examples, solved
approximately using these general purpose programs. Then part of the general
purpose programs for solving the internal Dirichlet problem was published in
Moscow ("Giprotis')* [27,28], which made it possible to give a more complete
discussion of the approximate method and to define certain concepts as
well as the proof and conclusions of known theorems and formulas, which were
used in demonstrating the approximate method. It seems to us that this

will facilitate understanding of the material discussed.

§ 1. Dirichlet Problem and Green Formulas

Let V be a finite region bounded by a closed Lyapunov surface S. The

internal Dirichlet problem is as follows: We seek a harmonic function u ir the

region V, i.e.,

o*u *u e
S e b =0

Au .
ox? ox} ox; (1.1)

which at the boundary s assumes specified values y(s):

“le=00)
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The external infinite region-with the boundary s is denoted by V@, The
external Dirichlet problem is as follows. We seek a harmonic function in V.
[

which at the boundary s satisfies Expression (1.2).

* Translator's note: State Institute for Standard Experimental Planning and
Technical Research.
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The method discussed below for solving the boundary value problems is
based on several integral expressions. For the Dirichlet and Neumann boundary

value problems (both interior and exterior) such an expression is called the

Green formula.

First let ws find the Gauss divergence theorem which establishes the re-
lationship between the triple integral over the volume V and the integral
ovex the surface § which bounds this arxea [9].

Let Ai{x), i = 1, 2, 3, be functions which have continuous first deriv—
atives in the regiom V. We can use the following rule [9] for computing
the triple integrals.

For reduction of the triple integral

m‘ f(xy, X0 x5)dV

v

to a single and double integrél: ‘(1) let us map the surface S, which bounds

the region V, onto the plane X1s X in the form of the region &§; (2) let us

(1) (2)
3 3

determine the coordinates % and x

of the points of entry and exit of

the straight line, parallel to the axis Ox, and passing through the point

3
(xl, X2) of the region §; (3) if we assume Xy5%, to be constants, we can

compute the integral
(2)
x:!

f(xl’ erxs) dxa»
X

and then the double integral - /7
£

'gdaj fxy, X, X3)dxg.

PR

A
Applying this rule to the function “a‘;’* and recalling that the integral of
1

the derivative is equal to the difference in values of the primitive fumction

at the upper and lower limits, we obtain

Lo




x()

U’ﬁ&- ]Jd ’ _d_AL dx,= ﬂ[A‘(xl,xz,x‘;;")——Al () Xq, X)) d.
. 0x, '
v o

[

Let us divide the surface S into three parts: S, is the set of points

1
of entry into the region V of the straight lines parallel to the axis Oxl;

52 is the set of points of exit from the region V of the straight lines parallel

to the axis Oxl; S3 is the set of points belonging to the parallel axis Oxl,

tangent to S. Let us denote by (nx,xl) the angle between the axis Oxl and

the outer normal n, to S at the point ¥&S§ .
From the trivial equations
ds=cos (n,, x;)ds for S,, do=—cos (ny, x)ds for S,

where ds is the element of S (area of an infinitely small vicinity of the

point x€§& for §), we find

Jﬁ Ml W= jJAl(xx,xg, x§) cos (n, x;)ds+ j Ay, Xy, 24) €05 (ny, %) dS,
S

or taking the fact into account that at the points S3

cos (f1,, x,)=0,

we find (the index x at the normal will be dropped in the future)
ﬂ] jék dV = f A, cos(n, x,)ds.
B ox,
12

After writing analogous equations for the functions A2 and A3 and

combining them, we find ultimately the Gauss divergence theorem

~ 3

mz_a;dv JJZA cos (1, x;) ds. (1.3)
v ! =

=1



Let us note that Formula (1.3) is wvalid also for those regions whose
boundaries s contain individual lines with points which have no normal n [4].
However, the measure (area) of the set of such points must be equal to zero.

As a result, the exclusion of these points will not influence the wvalue of the /8
limit to which the integral sums tend. In practice the boundary s must consist
of a finite number of surfaces such that a normal n exists for each interior

point.

Let us analyze the adjoint linear differential operations

3 3
R
=1 =1 ""l di =
3

It is not difficult to prove directly that they satisfy the following

< 0 0 - 0
Lu—ul* =Z Z a;, ( __E. —u ﬁv_) Z e (b U0}
TR =1 = x; T\ ox, 0x; . + [t g, (1.4)

If we assume that u and v have continuous derivatives up to second order

equations:

inclusively, by integrating (1.4) and taking Formula (1.3) into account we

Jae-araar=JT5

s 1

obtain

3
E na;, ; (U ﬁli_.- u (jz_l_ + Z biniuvj ds. (1.5)
/ o Ox; ox;

7

Expression (1.5) is called the Green formula. Since we obtain from it
the so-called fundamental formula of the theory of harmonic functions, then
it is important to know in which instances it remains valid. Let the functions
u and v have integrable derivatives of second order which are continucus
only inside the region V. Thus, for example, when region V approaches the

boundary s, the second derivatives of the functions u and v may increase

L




without bound, undergoing an infinite discontinuity at the boundary points.

It is easy to show [4] that in this case the Green formula remains valid. Let
us look at the region V' which i3 contained inside the region V along with

its own boundary s'. Since the left-hand side of Formula (1.5) is integrable,
then when V' + V the limit of the integral of V' does not depend on the

way that V' approaches V and by definition is anvintegral over the region

V. The expression under the sign of the integral in the right-hand side of the
Green formula is continuous in the region V up to its boundary. Therefore,
when V' + V the integral of this expression at the boundary &' of the region
V' varies continuously and converges to a limit which may be only the integral
over s. But as long as V' # V, Formula (1.5) is valid; consequently, when

¥' -+ V its left~ and right-hand sides approach the same limit.

When ags = 1,5 =1,2,3) and bi =0 ({d = 1,2,3), if we take into account

the fact that the expression

in this case represents the differentiation operator in the direction of the

outer normal n to 8, for the Green formula we find

m(mu—uzsv) v = ﬂ(v g?l_—u ;"n_) ds, (1.6)
A ;

In the two-dimensional case, Formulas (1.5) and (1.6) assume, respectively,

the following form:

JJ (vlu — uL*v)dV = ”ZZ n,a,,l.(v % u Zbﬁ:ua}d Cwn
ﬂJ(UAu uAv)dV = J( _—v_._. ds. (1.8)



§ 2, Fundamental Formula for the Theory of Harmonic
Punctions.

Let us analyze the function

1 1

e Do

—T———— ¥
' l/ igl @ —x)*

where vy and X (i - 1,2,3) are coordinates of the two points v and x.
We can show that when v ¥ % 1t satisfies the Laplace equation

A-—l—=0.
r

In fact, the following expressions are valid:

6 1 -y & 1 (r—y)t 1
G L A A LA
ox; r = ox? r I + 8

from which we find that

3 3
| # 1_3 3 Z e,
A’;‘“Z’ ot roorm I(M‘y")“ '
i= i=

The function

1 1
T (x, y)"a‘;[m“‘}‘ % (x, y)],

where ¢(r, y¥) is harmonic with respect to y and continuous along with its first
derivatives in the region V, is called the fundamental solution to the Laplace
equation in the region V. Let x not belong to the bounded region V. Then,

the fumndamental solution [ (%, y) is harmonic in this region as a result of /10

which, after substitution into the GreenFormula (1.6},

v(yr=T(x, Y,




we find

mr(,v, 9) Au (y)Vd, = j J [r (x, v ‘f;.(f‘(?-.-udr t, ’J)] ds,, x€V..

N n dn
% v v

This latter equation for the harmonic function u assumes the following

form (below we shall drop the indices at the normal and the variable of inte-

du dar
J(J‘(FE;-M .&;) ds=0, x€V,. 2.1)
S

Let us analyze the case when the point x lies inside the region V and

gation)

denote by WE a sphere with an arbitrarily small radius ¢ with the center at the
point x, lying completely in the region V. Using the Green Formula (1.6) in

the region V - WE, we obtain

ﬂ'rﬁ‘ﬁ_ ds,ﬂ]mudv J d+Ju—~dS (2.2)
v

v—We

where wl is the surface of the sphere We' With regard to the expression for
the fundamental function I', the third integral in the right-hand side of this

latter equation assumes the following form:

[ ot otz [ ()

1 1

d
Taking into account the fact that on the spherical surface W, —dc-i———a—
n r
(n is the outer normal), r = €, and that the first integral in the right-hand

side of the last equation vanishes when ¢ » 0, we find

ﬂufi_[: ds_._.-l_. f uds,;
A dn 4me? 1
w

] Wl

or by using the mean value theorem and the equation

j ds=4we?,
LA

we ultimately find the following asymptotic equation:



. dar ) u
lim ﬁu & ds=lim’ aVst—llmu =t (9, (2.3)

gm0 | n e—0 4ms? e=0
1

where L is the value of the function u at a certain point belonging to the

sphere We .

The first integral in the right-hand side of Expression (2.2}, when z—0 il

approaches the improper integral

lin(l) ﬂ( T'AudV — ’U} T'AudV, (2.4)
AL +

V—We

if this latter exists, and the second integral in the right-hand side of (2.2)

vanishes when -0

du
lim 22 ds=0 i
e—0 , dn (2.5)
v,
- . . du - . » =
since the derivative o is continuous (based on the assumption used in

deriving the Green formula) and consequently is bounded, and the fumction T
increases when g—0 on Wl as 1/¢, whereas the area of the surface Wy

2
decreases as ¢ .

Substituting Equations (2.3) - (2.5) into (2.2) we find

(e ey s e

This latter equation for the harmonic function u assumes the following

JJ(F : ds=u (x), kEV—s. 2.6)

Let us finally analyze the case when the point x is located at the

form:

boundary of the surface S. Let us denoteby Ws' the part of the sphere wg
which lies in the region V and use the Green Formula (1.6) in the region

V-Ww'
€




[r oetyasfrove- [rdos [ o

s—W,

where W, is the part of the boundary s, lying im the sphere Wej W3 is the
part of the surface of the sphere W, lying in the regiom V,

Repeagting all the arguments of the previous case, we wmust have the
value of the integral ffas . equal to the area of tha part of the surface
Wa
of the sphere W_ which lies in the region V., To compute this integral, let
us intraduce at point x a local system of caoordinates §y, §. & with €3 directed
along the outer normal to the surface § at point x. We shall assume that
the equatiop for the surface S inside the sphere WE can be written in the form

§a="F(y &) (2.8

where the function £ and its filrst-order derivatives are continuous and
vanish at point ¥. We can show [4] that any sufficiently smooth surface can
be described in the form of (2.8) in a sphere of sufficiently small radius.,
Expanding the function f(, &) 1in 8 Taylor series in the immediate vicinity
of point ¥ and teking into account all firvst-order terms, we find the
following velationship ’

/12

= f’;", (Ep r;z> 51“‘/:"5}( 37 52)92: (2.9)

where Qgﬁ‘%hzl?@,. Fa (6o ¢} (i=1, 2) are the values of the derivative of the
function § with vespect to variable &  at the point (§,, §,) and on the strength
of the above, they vanish simultaneously with <1, & . Substituting into (2.9)
the values ¢ (i=1, 2, 3), expressed with the aid of the spherical coordinates

=rsinfcosg, Z,=rsinhsing, =r c0s Y,

-
®3

10



we find

cosf=F; sinfcos g+f sinbsing="nh(r, 8, ¢),

where h is a function which is bounded and vanishes simultaneously with r,
Now let us

and 8 is an angular coordinate of the point on the surface S.
concern ourselves with computing the integral that is of interest to us
. .

2=
1 i 1
- ds =.. rzs n(jdﬁd o Y— i ==
ﬂ P ﬂ‘ i = 4T_Jdcpfsm9dﬂ

4re?

W, W, 0 0
2z =/, 2% 0 2% _ (2.10)
]dcpJ'smede+ fd(pf smedr:..i_,,f_ dcp[—cosﬂ]“ -
0 9 h 2 0 "

27
I 1 — l
[ — hl, 0, E— RS
3 +4nJ & 0, @)= - +H (e),
0

where
21:

H(®)= '“J hie, 0, @) dp
47
0
is a bounded function which vanishes simultaneously with ¢. Taking (2.10)
into account and using the mean value theorem for the third integral in the
right-hand side of (2.7) we find the following asymptotic equation
' -
lim Ju ar ds=1lim 2. H ds = lim u, + H & -—ﬂl
e—0 J dn g0 4TCE A z—0 2
W, Wy
Applying the arguments of the previous case (s€V—S8), to the other two
integrals in the right-hand side of Expression (2.7), we find the relationship

U(F_‘;%—u_._)ds—- ﬂ]l"A v+ ”(") x€S,
1%

which for the harmonic function u takes the form
F—di—u.{ s =-i‘(f-)ﬂ, x€8.
dn dn 2 .
s (2.11)

11

e,
(98]

;



After combining Formulas (2.1), (2.6) and (2.11) into one, we find the

basic formula for the theory of harmonic functions
0 when x€V,

J‘J(r )ds— _;_'_u‘(x) when x€S (2.12)

u (x) when x€V—S.
Formula (2.12) remains in force if V is an infinite region with a finite

boundary s. TFor this let us analyze the sphere W of finite radius p, containing
the boundary s inside itself. The intersection (part) of the regions V and W
can be denoted by V*. After using Formula (2.12) in the region V%, we arrive
at a formula whose left-hand side will differ in form from the left-hand side

of Pormula (2.12) in that the integral

du
Juj( )ds | (2.13)

&

is added to it, where W, is the surface W of the sphere.

4
To prove that this integral equals zero, we must know the asymptotic
behavior of the harmonic functions at infinity [4]: the function u, which is

harmonic in the infinite region, satisfies the inequality
|9« | o ' (2.14)
lu(X)l <"““9 "b"’“l (l=19 27 3)’ ¢
r i

where

r.."/ ;

Inequality (2.14) is a simple corollary of Kelvin's theorem [4]. Taking
{2.14) into account and determining the fundamental solution, we conclude that
when o + « the integrand in (2.13) decreases as 1/93, whereas the area of the
surface W, of the sphere W increases as pz. Passing to the limit when p -+ =,

4
we again find Formula (2.12).

12



In the two-dimensional case, the function

1 1
O )= [ln e y)], (2.15)

is called the fundamental solution to the Laplace equation, where r{x,y) is the
distance between points x and y on the plane, and K{J():, Y) is a function which
is harmonic in the two-dimensional region V with respect to the coordinates of

the point y. It is easy to prove that when x # y the function 1n 1/r is /14

harmonic for the coordinates of points x and y.

The fundamental formula of the theory of harmonic functions for the

two-dimensional bounded region V has the following form:

0 whenx€V, (2.16)
- (2.
r _dil_-u.fi} _) ds = -1— u(x) when x€s.
dn . dn 2
$ U {x) when x&V—s.

It is derived completely in analogy with Equation (2.12), and therefore,

we shall not give its derivation.

In the two~dimensional case, we must especially analyze [4] the case of the
infinite region with a finite boundary s. Let us look at the finite region VP
included between the boundaries S and C, where C is a circle of radius a with

&

the center at the origin, encompassing S. Let us use Formula (2.6) in the

region Vl X ' 4 |
—-1— ‘ iu—lnl-—-uiln_l_ ds—{—-_l_j(@.ln_l_—-u—»ln._) ds=
2r J\dn r dn r 2r j\dn r dn r
s c (2.17
I 0 whenx€R-V,
= ,_;_u(x) when x€S-C
where R is the entire plane. u (x)when x€V,
dul 1
If we assume that g n.;_ vanishes no more slowly than
In (xi+x3)
g+

13




we find that

lim —_ln..._ ds=0. (2.18)
a—co n
Since on the circle C -E_ In .l.: -._._1__, then the integral
dn r a
_L u —d_ In -1_ ds
2n dn r
c

approaches the "mean value of the function at infinity"

1
= lim uds.
a-l-.co 2na ( (2.19)
C

Substituting Formulas (2.18) and (2.19) into (2.17), we find the fundamental

formula for the harmonic functions in the infinite two~dimensional region

0 when x€ R,—
i
J(-——l **”—’;In~r—)d5+u -;—u(x) when x€s (2.20) /15

4 (%) when x€ V.

Substituting into Formula (2.12) the values

11

u=1, =_—_ —_—
4 r
we find the Gauss formula
— 4% when x€V
J _‘i _l_ ds= ] —2n when x€s (2.21)
S dn 1 | 0 when x€V,.

In the two-dimensional case, the Gauss formula has the form

—2n when x€V

= ln — ds cose ds=) —= when x€s

s r 0 when x€V,,

(2.22)

14



where ¢ is the angle between directions n and r.

Let us denote by

du (£) du(§)
dn, ' dn

the limiting values of the derivatives of u(xy=jjli.ds in the direction of the
r

normal when the point x approaches E€S from outside S and from inside 5 respec~

tively and by du/dn. the value of the derivative with respect to the normal of

0
the expression for the potential of a single layer (2.23) at the point x=E€S.

The values du(i)/dne and du(g)/dn:.L are called [4], respectively, the outer
and inner normal derivative of the potential of a single layer at the point £,
and the value du/dn0 is the true value of the normal derivative at this same

point. If we use the continuity at point { of the Expression [4]

d 1 d 1
o el e
s S
where d/dn0 is differentiation with respect to the outer normal to s at point
£, d/dn is differentiation with respect to the outer normal at a variable point
of the surface S, Py = p(E) and taking into account the Gauss Formula (2.21),

we find

du(®_du @) oy ),

dn, dn,

du () du (§) .
’E;:‘==-Eh;-4‘2n9(§f

(2.24) /16

In the two-dimensional case, the analogous relationships have the form

du® _du )

dn, dn, — @ (2.25)
du® du@® , .
-t‘i‘n‘l— -—-"E“ + = (B)-

15




§ 3. Some Concepts of Functional Analysis

Let us introduce some concepts [7] of functional analysis, which will be

used in the future.

The set R of elements X, y, 2... is termed linear, if in it we define the
operations of addition, denoted by a "+" sign and multiplication by numbers
(real or complex), which do not go beyond the limits of R and which satisfy

the following conditions:

o
°

Addition is associative, i.e., (x+y) + 2z = x + (y + 2).

2, There exists a zero element 0 such that x + 0 = 0 + x = x for any x¢R.

(5]

Addition is commutative: x + y =y + x.

ias
o

(et+p)x=axtpx.
g{x-t+y)=axt+ay.
& X)= (o) X-

1 x=x.

& LA

e
®

Here the Latin letters denote elements of R, and the Greek letters denote

numbers.

We shall say that scalar product is defined in the linear set R if corres-
ponding to each pair of its elements x and y, taken in a given order, there is
a complex number (X, y), this number is called the scalar product of these

elements and satisfies the following conditions:

1. The scalar products (x,y) and (y,x) are complex conjugate numbers

(= Y= (m

By

2. For any elements x, y, z&€ R and any complex numbers oy and a, the

following equation is wvalid



(rx-toy, 2)=a, (x, 2)+a;(y, 2)-

3. The scalar product of the element x by itself is a nonnegative number,

equal to zero only when x = 0, i.e., (x, % > 0.

The set R is called a metric space if for any two of its elements x and ¥y

the concept of distance p(x, y) is defined to satisfy the following conditions:

1. p(x, ) »0 and p(x, y)=0 when and only when x coincides with y.
2. plx, m=p(y, %)~
3. p(x, y<p(x, 9+p(2 y for any three elements x, y, z, belonging to R

(triangle axiom).

The set D of metric space R is termed dense in the set D,=R, if for each
x€D, and £>0 there is a point z€D such that p(x, 2)<e. It is clear that
the concept of density is transitive [1l], if D is dense in DO and D1 is dense
in D, then D, is dense in D.. Here, of course, it is assumed that the metrics

1 0
are fixed.

Metric space is called separable, if it includes a denumerable dense

subset.

The linear set R is called a normalized space if to each element x¢R a
real number | x| >0 is associated; this number is called the norm of the

elements x, and the following conditions are satisfied:

1. (x| =0 when and only when x = 0.
2. fhxi=AlUIxl.
3. lx+yll<ixh+lylh-

The sequence {x,} of points of metric space R is called self-convergent if

£ (X %,)—>0 when m, n—>co, i.e., p(x,, x,)<e when 'm, n>Ne.

17




The metric space R is called complete if each self-convergent sequence

{Xa} converges, i.e., a point x,€R exists such that x,—x,.

The normalized space R is called unitary if in it we can introduce a scalar

product associated with the norm by the relationship

hx1 =V, x) .

(1)

The complete unitary space is called a Hilbert space .

For interpolation of the spaces LP we must have the concept of a measurable
function and a measurable set. Here we shall assume that we know the concept

of the outer measure [8] of the set.

The set R is called measurable if it can be closed by an open set D such

that the outer measure of the difference R - D is as small as desired.

The function f(p) given on the measurable set R is called measurable if
for any real a the sets D[f > a]; D[f < a]; D[f > a]; D[f < a] are measurable.
The symbol D[f > a] denotes a set of those points R for which the condition

contained in the brackets is satisfied.

By the space Lp(s) we mean a set of all measurable functions given on the /18
measurable set S, the Rth power of the modulus of which is integrable in the
Lebesgue sense, i.e., if f€L?, then |f|#€ L(s). The norm in the space 1P(s) is

interpolated from the formula

NyH=1fll ,= (ﬂ:f 7 dx ),’7.

il‘}“>Sf31311£at:i.me‘_s {5] the following definitions are used: the linear space R
is called a Hilbert space if it is separable and if a scalar product is intro-
duced in it. This definition is not equivalent to that given above. In [7]
and [10] examples of nonseparable Hilbert spaces are cited.
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It satisfies the following inequality:

Nl(f’ g) < Np (f) Nﬂ’ (g)1

where p and p' are adjoint indices: 1/p + 1/p’' = 1 is the Hlder inequality
[8] (when p = 2 it is the Buniakowski-Schwartz inequality);

is the Minkowski inequality [8].
When p -

N;n(f) — Max lfl»

where Max |f{ denotes the intrinsic upper bound [11] of [fl, i.e., the least
value of n such that |f]| < n almost everywhere. Therefore, L~ is denotes as

a class of intrinsically bounded functions or functions of equivalent(z> bounded
functions. Let us note that in the space C of all continuous functiomns of the
norm Nc(f) = Max |f|, NC(f) = Max (f) is also defined but here Max is the

ordinary maximum.

n
The set of all possible elements such as ) A, where Ai are arbitrary
i=1 ‘

real numbers, is called the span of the system {¢n}.

When n =1, 2, ..., let {¢n(s)} represent a system of nmonzero functioms of
L?(s). If

(Pm, 9n) ""JT'Pm ¢, ds=0
s

(2)

The functions f and g are called equivalent if f = g almost everywhere.
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when m # n, then we say that {¢n} is an orthogonal system on s. If furthermore,

-

“(%ns cpn)=tﬂ {PalPds=( 1l 9, Il )2=1

S

for all n, then we say that‘{¢n} forms an orthogonal normalized (orthonormal-

ized) system on S.

The system {¢n(s)} is called [11] complete in LP(S), where 1 <p <, or
in € if no nonzero function exists from Lp(s) or C(s) that is orthogonal to
each ¢ﬁ, i.e., if for fELP(s) (fE€EC(s))»

j’f fo,ds=0 (n=1,>2...)

)

we imply £ £ 0. Since, if f€L%s), then fGLP(s)l(3 , where 'b > d; then from /19
the definition of completeness it follows that if‘{¢n} is complete in LP(s)

then it is complete in C and Lq(s) when q < p.

The system {¢n} of functions from Lp(s),(or C) is called [11] closed in
L?(s> {(or C) if the span of the system {¢n} is dense in Lp(s) (oxr O).

The following statement will be used often and therefore, we formulate it

as a theoremn.

agﬁyor proof of this assumption consider the integral

[[\f1pds= [[ \fipds + [[ 11ods<si+A,
s s {fl=1) s ([f1>1)

where |s| is the size of the set s, and

A= [[ 1719 ds<co.
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Theorem 3.1. An orthonormalized system P (M), obtained from a

complete (closed) system, is complete (closed).

Let wus prove the following theorem [11].

n

Theorem 3.2. 1If q%ﬁ=§:}%1@m is a certain polynomial of the crtho-~
m=0

normalized system |9,!, then

NY(f—®,) =N} (f)—};ocm Z Cotl

where Cm are Fourier coefficients of the function f for the system {¢,!.

Considering the easy-to-prove equations

f{ﬂb ds= Zcmym, ff O dx = Zy,,,,

m=0

we obtain

NE(f—D,) = N3 (f)— 2Zcmvm+7 Y3 = Ni(H)— Z%-PZ(C —Ym).

m=0

The following theorems are a direct consequence of the proved theorem.

Theorem 3.3. Of all the polynomials @, of a given order the best mean

square approximation of the function is given by the Fourier polynomial

c and the following expressions are wvalid
m¥n

Ni=(f~f.)= NZ(n—}:cm,

ZCz<N2(f)— ] pas.

m=0

m=0

The following important theorem, which is given without proof, will be

used below.
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Theorem 3.4 (Ritz-Fisher) [11]. Let E::C <o . Then a function f /20

exists from,L (s) which has its own Fourier coefflclents Cj. Furthermore,

f.~>f in the sense of the metric L (s), i.e.,

jsj (F.—?ds—0 (3.1)

and

[[ Pds= }fo c:. (3.2)
s n=

Theorem 3.5 is a direct corollary of the Ritz-Fisher theorem.

Theorem 3.5. TIf the orthonormalized system {9,} is complete, FEL*(s)

and € (n = 1,2,...) is a Fourier coefficient .of the function f for the system

{9.] , then f and C satisfy (3.1) and (3.2).

In fact on the strength of Theorem 3.3 E::Cﬁ<ioo‘and f is equivalent to

the function f in the Ritz-Fisher theorem. "=V

. 2
Let us prove that closure and completeness of equivalent in L°(s).

Theorem 3.6. The system of functions from Lz(s) is closed when and only

when it is complete.

On the strength of Theorem 3.1, it is sufficient to prove equivalence

for the system {9,!, obtained after orthonormalization.

Let {¢,| be complete and f€L?, then according to Theorem 3.5, [.—>f
in the sense of the metric Lz(s). Hence, on the strength of the definition,

~

the closure follows.

Let (9.} be closed and all Fourier coefficients of the function be equal
to zero. We must prove that =0 (completeness). Since {9n) is closed, then

a sequence of polynomials @, exists such that @,—f in the sense of the metric
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Lz(s), i.e., No(f—P,)>0, but on the strength of Theorem 3.3, V:(/—/.)=0,

But fn = 0 and therefore, N:()=0, f=0 and the completeness of the system
{®.) is proved.

Let us give without proof analogous theorems for the spaces 1P which will
be used below.

Theorem 3.7. [11]. If l<p<co and {9,}is closed in Lp(s), then it is
T
complete in P

Theorem 3.8 [11]. If l<p<co and {9,)1is_complete in‘Lp(s), then it is
T
closed in LP .

When p = 1 Theorem 3.8 is not wvalid.

Below we shall wuse the following Theorem [11].

Theorem 3.9. If

l<p<co, then the sets of functions of the space
Li(s) (p<g< o), and also the sets of bounded B(s), of continuous C(s) which have

. t . . . . :
a continuous k derivative of the Ck function are complete in Lp(s),

Using Theorem 3.9, we can prove the following theorem.

Theorem 3.10. If the system

{9;(M)} is closed in Lp(s) and l<g<p,
then the system |9;(M)] is also closed in L2(s).

For proof let us look at the
mean value of the function f in the interval (a,b) with the index p [11].

M, (’):(F_l"a‘ Jf :flf’dx);?.

S

The mean values have the property [11]

M, (<M, (/) wheng<p.
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Let us note that the norm Np(f) does not have this property. Let
félqﬁ>; then according to Theorem 3.9 we find such a function g€LP(s) that

1 .
Nﬁ@l~g}<-§_s. But {9:(M)} is closed in Lp(s) and therefore, there exists such
a polynomial ¢, that

1 X
N;(g—w) < 9 ¢ (b—a)? 7.
1f we take into account the trivial equation
L
Np(H=(b—a)?M ()
and the mean value property, we find
L
Nq (f)<(b~a)q 4 Np(f)'
Therefore, considering Minkowski's inequality, we have
i 1L
Nq (/c“w) < Nq(fwg)—‘_Nq (g'_w)< -2“‘8 + (b__ a)l] p Np (g‘“w)<5

Let us note that if {¥,} is closed in C(sl), then it also is closed in

L?{S) whaen 1<p<co (but not necessariliy closed in L= ).
Let G be a certain subspace of the Hilbert space R, formed by the
system |g;) (G is the span of the system {¢;}). We can prove the following

theorem,

Theorem 3.11 [10]. If there exists in G an element (vector) y, which is

the least distance from x€R (x does not belong to G), then the vector x-y

is orthogonal to each vector g from G, i.e.,

(x—y, 8)=0  (g€0G)

3]



and in the case of a finite—-dimensional subspace G, formed by the linearly

independent vectors %1, Ps,..., ¢, for the square of the error with which the

vector y approximates the vector x, we have

3% =mmin Ili—alcpl-—achz_. co—a,, |12 =G(x, P Por--r Pu) , (3.3)
7 G (CPl, Doy oevs cpn)
where
n
y= E::“:?u
i==1
(P1, 21 (P20 1) oov (Pns @1)
(P15 %) (P2 P2) +.. (Po P2)
Gpyy Pay ey )= | . . . . .. Ve e e e
(CP.I' cpn) (CP2r CPn) oo (CP", (Pn)
is the Gram determinant of the system of vectors %i %2 ... s $n-

Let us assume that a vector f exists in G for which

(x—y, f)::r:*: 0,

and analyze the vector

2= —f———r_.e
T A

For z we have

2 IrIZ 2
- hx—gl*— <l x—

| x—2z I *=(x—y— f,x—y

I
¢ h

and the resultant contradiction (on the assumption that y is a near point to x)
proves the first part of the theorem. For proof of (3.3) we write in detail

the equations

(x—y, o)=0,  k=(l, 2, ..., n), (3.4)

using the expression for y,

25
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n
Zoa- (90 P)=(x, 9), k=(1, 2,..., n). (3.5)

i=]

Taking (3.4) into account, for 62 we find
8= (v—y, x—y)=(x—y, N—(x—y, =(x—y, V=05 D= 2

or expanding the expression (y,x)

n
(x, x)~5%= Z o; (i X).
i=1

Combining (3.6) with System (3.5) we find a system of n + 1 equations with
n unknowns (&), G, ..., &,).

To solve this system it is necessary and sufficient that the rank of

its matrix be equal to the rank of the resolved matrix

(P 1) .. (Pnr @0 (¥, P1)

A= e e e
(:Pl" cPn) e (CP,,, an) (x’ (P‘n)
(:Plv X) (an. X) (xv x)"_az

Hence we find that A = 0 and

23
62_G(x’ cpl' CPZ’ ey ?n)
- G N e (3-7)
(P1r P2r vvvs D)
We can prove that
G(cplv PARAKE CP11)<G(<PD Par ooy ¢m)G((Pm+ly (Pm.;.g, caay Cpn), (3.8)
where m<n and %o CPg,..;, ¢, are linearly independent vectors.

It is obvious that
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MmN @y®peps Prr—* * * —FnPpy [ < N [ g — ——e—§
a #u myn B PR Brt1Ph 41 T FmPm I

MO @ Eopps Prmger =+ * * — G . < 1l P 1
a

Taking into account these latter inequalities, from (3.7) we find

G(Pry Praps---s ¢_l_< _g(?m Phttr oors Pm)

G(cpk-l-lv sery (Pn) G(?h-‘—-l' cess CP,,,) ' (3.9)

G((va Pratis ooe CPn) <G(CP )
G(cpm'+1’ sivs an) "

Since G(9; ®j1» ..., 9)>0 (j<1), then (3.9) can be written in the form

G(cph' (pIH-l.v seey cPu) < G(CPIL—H' Pptar ooy (Pn)
G(CP,{, Prtrr oo s CPm) G (CP[{-{-M Pptar oo (Pm)

(k=1,2, ..., m—1).

Thus,

G((pl,..., CP,,) < G(Cp2, ceey (pn)< Y(G((P_my..-v an)<:’»G(CPm+19-"’ @n)‘.

G(cph---v CPm) G(cp‘.h LA q’m) T G(C?m)

§4. Linear Independence and Completeness of Several Systems

of Harmonic Functions.

Proof of convergence of the approximate method discussed below for
solving the Problem (1.1) - (1.2) is based on the linear independence and
completeness of a certain system of harmonic functions. Therefore, we shall

give several proofs for completeness of this system.

1 .
for example, that Sl be a Lyapunov surface(A)) which completely includes the

) All the material discussed below is valid also for the two-dimension~—
al region. 1In the latter case only the System [1-3] of functioms
{nr(M, M), which differs from (4.1) is analyzed.

Let G, be a region with a sufficiently smooth boundary S (it is sufficient,




region G and the minimal distance from S to S, be greater than zero, i.e., the

1

surface Sl is not tangent to the surface S.

Let us introduce the definition:

1
s =1, 2,..),
A M) w; (M) (=1, 2,...) 4.1

where #,€S5, are elements of the denumerable set of points which are everywhere

dense on the surface Sl'

Theorem 4.1 The system of functions {w;{(M)} is linearly independent on the

curve S, i.e., for any N from the equation /24

N
Y Crog (M)=0, MES (4.2)

i==]

it follows that

where all k. are whole numbers.

Let us assume the opposite: let there be found such bounded number Ci
which are not all equal to zero that for a certain N Expression (4.2) is sat-
isfied and a certain Cr # 0 (r <N). From (4.2) and the theorem of uniqueness

for the Dirichlet problem it follows that
N‘ _
Y Ciop (M)=0, MEG=G+S, (4.3)
=l
and from the analyticity of the left-hand side of (4.3) it follows that
N .
Z Ciwkg (M) =0, MtG_l. (4.4)
(=l
Let M approach Mo Then |Cwg |—>c, and all other terms in (4.4) remain
T

bounded, thus contradicting Equation (4.4) and consequently our assumption

that CY # 0.
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From Theorem 4.1 there follows the validity of the following theorem.

Theorem 4.2. We can construct such a system of functions |¢,(M}!

orthonormalized on S such that

i
®; (M)'—‘—:Z Ay wp (M), (4.5)
: k=1

where Ai are the coefficients of orthonormalization.

sk

The system {¢;(M)} can be constructed [5] successively. Since the

system {o (M)} is linearly independent, then

[[ eds>0 (=1, 2..)
S

Therefore, we have
bt (M)
Vs
S

It is clear that ¢;(M) is normalized. Let us construct the elements

Py (M) =

@ (M) = 0y (M) + 2,3 @, orthogonal to @¢;

Fe]
in

jf @, 0ds = f[ ¢, w,dS+a=0. /
'8 S

For wo,; we find the equation

%y = ff 00y dS.
s

From the linear independence of the system [(w;(M)} it directly follows

that

ﬁ@m>a
S
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Therefore, we have

Q2= -—E-P2—_—~————— ,
R

which guarantees both normalization of the element ¢,and orthogonality of
91 and %, . Let us construct the orthonormalized elements 91 P2 > 9% . The

next element will be sought in the form

Pr+1

‘*’H*:‘/W ’ (5.6)
S

where

.(f;k+l=wk+1+ Gppar,n it w o o Ces, & Pre 4.7)

The coefficients @&, (i=1,2,..., k) are determined from the condition

of orthogonality ffa,mcpi ds=0 (i=1,2,..., k) . We find
S

Xpay, =ff‘wk+l ; ds.
- S

From Expression (4.7), if we take into account that ¢, ¢ ..., ¥» do not contain
wpe; 5 it follows that the denominator of the right-hand side of (4.6) is
nonzero. Thus, we construct any element of the orthonormalized system {g;(M)]}.
To obtain Expression (4.5) we must substitute the values ¢, 9,,... 95, into (4.6)

expressed through ©,, Wy, ..., 0, - Theorem 4.2 is proved.

The algorithm described above gives ¢,(M) in the following form:

i—1

(Pl(M)=Z A, won +A P W 4.8)
k=1

As will be shown in §5, of this Chapter [for the discussed approximate method

9;(M) lwe must bear in mind (4.5) because Ai directly participates in

k
L
the algorithm of the solution. From (4.8), we can obtain the coefficients
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Aik of Expression (4.5). In fact, it is easy to prove the following expression:

i—l

Az,i—“-Az,n'lAz,k=Z Ay e (4.9)
=k
Since in any computer center there are standard subprograms for computing the /26

integral with any preassigned accuracy and for computing the determinant, then
from the viewpoint of simplicity of carrying out machine computation, the follow~
ing algorithm for computing the coefficients Ai i Possesses a certain advantage

3

over that described above. Ai x are computed from the following expression [6].
s

ff w} ds, ff ©,0,ds, ..., fftolwn;l ds, o,
“.wzwl ds, ,U wids, ..., ff W,0,_, ds, w,

. (4.10)
ff w, u;l ds, ffw,,wgds, e ff 0,0, ,ds, o,
" VGG, o
where Gn is the ' Gram determinant of the functions w;, w, ..., o,
ffmf ds, ffwlwzds, - ff 0,0, ds
ff ©;w, ds, ffm§ ds, , j’f w,w, ds
¢ . b. Ce e (4.11)

ff 0,w, ds, fj 0, ds, ..'., ff wids.

The integrals in (4.10) and (4.11) are taken on the surface S.

Let us prove the following assumption.

Theorem 4.3. The Gram Determinant (4.11) for the linearly independent

system {®;(M)} is nonzero.
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lLet us assume the opposite. Let Gn = (. We can analyze the system of
linear equations relative to @&(%u G ..., %) written in vector form
G, «=0. (4.12)

Since the determinant of this system is equal to zero, then there exists

2 nontrivial solution (&), &y, ..., &) «

Let us show that

In fact

But since &, & ..

clear that

iaif w,wjds=0

=1 s

and therefore 6§ = 0 or

n

(4.13)

.; @, are nontrivial solutions to System (4.13), it is then

(j=12.., n)

Y
Z o&; (1)‘-7—:0.
v)

i==1

The resultant contradiction (linear dependence of the system |[w;(M)|) proves

Theorenm 4.3,

However, we must note that with the

approximate method (with a finite

number of digits) for accomplishing the above algorithms the first approach

sossesses a substantial advantage.

32
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Let us prove the following theorem.

Theorem 4.4. The orthonormalized system of functions {%;(M)! is closed in

the space L2(s) of the square-integrable functions given on the boundary S.

First let us prove the completeness of the system of functions {(¢ (M)} in

the space L2 (s). Let v(M)E€L*(s). We can analyze the function
1
M) o ds,, NES,;.
JJ.Y( )f(M, N) M 3
S

This function, continuous on Sl’ assumes zero values on the everywhere
dense set of points N,€ S, ; therefore

1
M) —— ds,=0, NES;. (4.14)
ﬂ” Vo m ' )

But (4.14) is the potential of a single layer and since on the closed

Lyapunov sutface S, and at infinity it is equal to zero, then on the

strength of the un]i-queness of the solution to the external Dirichlet problem
(uniform conditions at infinity) it is everywhere equal to zero in V . This is
possible only in the event [12] if the density of the potential is egual to
zero. Thus, the completeness of the system {®;(M)] in the space Lz(s) is

proven.

But on the strength of Theorem 3.6, the system {®; (M)} is closed. For

final proof of Theorem 4.4, we must use Theorem 3.1.

From the proved theorem and the definition of completeness it directly
follows that the system {¢;(M)} is compléte in C and Lq(s), where ¢>2., As
far as the closure is concerned, from Theorem 3.10 it follows that our svystem
{9, (M)} is closed in the space Lq(s), where 9<2. ., Therefore, from Theorem
4.4, it does not follow that the system |9:(M)}is closed in C or L%(s) when
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q > 2., Now let us prove the theorem that the analyzed system is closed in C

and consequently closed in Lq(s) for all q <= (q > 1).

Theorem 4.5. The system (¢,(M)} is closed in the space C(s) of all

continuous functions, i.e., for any function y@M)gC(s)and for any >0 there

is an MN,{(e) and a system of coefficients a; (i =1, 2, ..., n) such that if

n> Ny(e), then
n
/{?ggl ‘r(M)—; a (M) | <.

For proof of this theorem we use the following statement from Reference
[13]: any function that is continuous on the surface S may be uniformly appro-
ximated by means of harmonic polynomials, if the region V with the boundary s
contains a stable solution of the Dirichlet problem with respect to deformation

(5)

of the region
Let Pm(M) be a harmonic polynomial of order m for the function y(M)EC(s)
max | v (M)—P,,(M < 2.
Mesl‘() n (M) | 5

Let us analyze the internal Dirichlet problem in the region Vl with the

boundary 81

AMu=0 B V,,

uk =P

(4.15)
,81 HlIsl »

and write its solution in the form of the potential of a single layer

q‘5}]'_*51 the two-dimensional case when s is a curve an analogous statement
directly follows from the theorems corresponding to the Weierstrass theorems
in the complex region (see, for example, the Runge Theorem [3], concerning the
uniform approximation of the function of the complex variable by a complex
polynomial).
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|

where the density Q(M) is expressed through the normal derivatives of the
solutions to the internal and external Dirichlet problems. Sufficient smooth-
ness of Sl produces smooth boundary values for Problem (4.15) and therefore,
guarantees existence of these derivatives. Let us look at Expression (4.16)
for the points M;€S,. The integrand will be bounded and continuous (if the
density is continuous) and therefore, the integral can be replaced by a Riemann
sum with the number of terms my (or by some kind of cubature formula with nodes

at the point x;=M;€S,), such that

m,

JJQ Min— L1 s, — E ain — | <=,
] r(x’ M) f==1] r(xir M) 2
1 Sl _

Let n > max (m, ml) = No(s); then we find

max
ME S

v (M)~ a0, (M) ] < max |10 =P -+

i=1

max
MES

n f
- max | P, (M)— a; w, (M) | <i+max gQM ] _...l_...uds,m
K MGS! Z; : [ 2 Mmes|, () In rix, My

Sq

: /29
-—-E a In - ‘ < g B
r (X[, M)

r==]

and the closure of the system {w,(M)} is proved. To complete proof of Theorem

4.5, we must use Theorem 3.1.

§ 5. Approximate Method for Solving the Dirichlet Problems

Let us analyze the Problem (1.1) - (1.2) and, after substituting I' = 1/47w 1/x
into it, write the basic formula for the theory of harmonic functions (2.12)

for the points x&V and x€V,, respectively

- )
u(x )~ ﬂdn Y ———(M)ds, %JJ mtp(M)dsx, x€V (5.1)




I (4 1 ] 1
0= — J‘[%— r(x,M) q)(M)ds”——Z;c_Ur(x,M) CP(M)de, erc’ (5.2)
s

§,

where

(M) =u

S

du
, M)=2
g (M) o

S

Since in the case of the Dirichlet problem the function o (M) is given,

then (5.2) can be written in the form

.”?‘(}1:7‘4‘3“’(M>d8x=1"(x>,

S

(5.3)

where F(x) is a known function
d 1
Fx)=ﬂ M) — — ds .
() = ( )dn TG Sy
S

Below we shall show that from Condition (5.3) we can determine the
function %(M) for the Dirichlet problem in the following manner. We can
construct coefficients for expanding the unknown function ?(M) into a Fourier
‘series for the complete system{9:(M)}, obtained by orthonormalization of °
System (4.1). After substituting the approximate values found for the function
¢ (M) into Formula (5.1) and carrying out the necessary cubatures, we find the
approximate value of the solution to the Dirichlet Problem (1.1) - (1.2) at

any point of the region V.,

The function determined on S, satisfying (5.3) for the arbitrary point
x lying outside the closed region V, will be called the solution to Equation
{5.3). 1If we analyze the normal derivative of both sides of (5.3) by passing

to the limit when x—»M,€S and considering Expression (2.24), we find

1 d 1 : . d 1
— = Jim e [ 5.4
¢ M)+ ﬂ 0 ) 5 i ds, = lim —E [Qn F <x>]. 5.8 10

N

36



For existence of the limit in the right-hand side of (5.4) it is suf-
ficient to require the continuity of ¢’ (M) (as follows from the Lyapunov ex—
ample [4], satisfaction of the Holder condition for the function (M) is
insufficient for existence of normal derivatives of the potential of the double
layer). Equation (5.4) is an integral equation of the external Neumann
problem and as we know [14], is uniquely resolvable. Let us show that the
solution to Equation (5.4) also satisfies the functional Equation (5.3).

For this let us substitute the solution to Equation (5.4) into (5.3) and

denote by v(x) the function obtained

“ d
M) d: --___. P
4rﬂ dn[ r(x, M)]‘p( ) o [ r(x, M) ? M) s, (5.5)

We must show that ¥(¥) =0 when x€V, . 1In the right-hand side of Equation
(5.5) we have the sum of potentials of the single and double layer, and
therefore, v(x) is a harmonic function. From (5.4) it follows that at the
boundary s of the region V the function v(x) takes zero values. If, further—
more, it is shown that

. ~0,
]x]llTOU (x) (5.6)

then from the uniqueness of the solution to the external Neumann problem we
find y(x)=v . For the three-dimensional case Equation (5.6) follows from the
very form of the right-hand side of (5.5). As far as the two-dimensional case

is concerned, the Equations (5.4) and (5.5) take, respectively, the following

form:
1 d 1.
¢ M)+ o f o) & _)ds -
::x]-i»%o —;z JQ)(M) r(x, M) M) = }'

1 drT
o=5- [ 4] (xM)]qa(M)d ——-f ey P,
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and according to the known properties of the harmonic potentials

M) ds, =0,
Jem)ds 5.7

Hence, as we know [4], we must prove the property for v(x) also in the
two~dimensional case, since Condition (5.7) is sufficient for equating the
second integral (potential of the simple layer) to zero in the expression for
v{x). We must show that the functional Equation (5.3) has a unique

solution. For this let us look at the homogeneous functional equation

1
JJ 9 (M) ‘;mds:o, XEVe, (5.8)

and show that it has only a trivial solution. Differemtiating with respect to
the normal (5.8) passing to the limit when x—>M,€s and taking into acount the

expressions in (2.24), we find

_._.}..____ dsM
(Mo, M)

-
? (M5 J % (M)

This equation for the external Nenmann problem with homogeneous boundary values,

as we know [14], also has only a zero solution.

Let us now proceed to writing the algorithm of the approximate method

for solving the Dirichlet boundary value problem (1.1) - (1.2).

By P: let us denote the Fourier coefficients for expanding the function

(M} in a series of functions ¢,(M)
O,= ([ (@)M) 9:(M) ds,
8§

where @ M) ig determined from (4.5)
i
(M= Ay ().
=1
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Let us write (5.3) for the points Mp€S, in the form
[[ @) 0, (M) ds=F,, (5.9)
s

where

A= [[ oo £ wanas

and the values of w, are determined from (4.1).

Multiplying the first i in the equations by the coefficients Ak‘iik = 1,
?
2,.0051) and combining we find

(Je (M),; An, 10, (M) ds= (j % (M) ¢, <M>ets=c1>.-~—-;:l Ay, i Fi

S

Since in the case of the Dirichlet problem the values of Fk are unknowrn,
and those of Ak ; are found in the process of orthonormalizing the system
. L4 )
V%(A4)} , then the Fourier coefficients of the unknown function ®{M)} are com—

puted. Let us introduce the symbols,
N

(M= O (M),
j=1
1

1 1 1 (4 ] M) ds,, x€V.
u (x) = EJJW@(N)(MMS“_F Z;tsﬂdn[r(x,M) b (M) o

From Theorem 3.5 there directly follows the following asymptotic eguation:

N
I M— S M) || =o0.
Jim !cp( = Y P )HL2 5.10)

i=1

Futhermore, it can be easily proved that for any interior point x of the region
V and for any >0 such a value of NO can be found that if N,<WN, then /32

fu(x)—u™(x)| <e, 6 In fact it is clear that

| (V)= () = - ﬂ . (xl o [cp(m—cp(mw) st [ <

1
41
[ @ (M)—opM (M)]

1 j} 1
<
ir
S

ds. (5.11)

r (x, M)
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On the strength of Expression (5.10) we can select N such that the

following inequality will be satisfied

{ ﬂ Lo (M)—o™ (M) ]*ds }l/’ < A4reo (5.12)

where ¢ is the minimal distance from point x to the boundary s, |s| is the area
of the surface S. Substituting (5.12) into (5.11) and using the Buniakowski-

Schwarz inequality, we obtain

s« & [ g P ron-wron]a e

s

This method for approximate solution to the boundary value problems will be

termed the method of V.D. Kupradze or the method of functional equatioms.

The completeness of the system of functioms {¢Aﬂ4)} makes it possible
to use the following algorithm for approximate solution of the Dirichlet
Problem {(1.1) - (1.2). For a given function ¢ (M) [the boundary condition of
the unknown harmonic function u(x)], let us comstruct a Fourier series on

the basis of {9, (M)}:
N .
$ (M) = Z T 0x (M), fk=‘_H b (M) ¢, (M) ds.
k=l §

Then on the strength of the completeness of the system {9:(M)} in the sense of

the metric of the space L., we have

2

Nl_i.mm H [‘NM)_}N: thPh'(M)]zds=0.

s k=1

The series

“@= ) hon(n
k=1
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for any *€V converges and represents a solution to the Problem (1.1) - (1.2).
In fact let G(x,M) be a Green function of the Dirichlet problem for the

region V. Then from the existence theorem it follows that the solution may be

©(x)= JIQ) M) -g-g— ds.

Let us introduce the notation

represented in the form

N
uM@)="%" o (M), x€V,
k=1

and look at the difference [u(¥)—u™(x)| . Using the Buniakowski-Schwarz

inequality and considering the finiteness of the integral
2
]
on
S
when x€V , we find just as above
u (x): llm u(/V) (x)_
Naw

lLet us mention that unlike this method, the method of V.D. Kupradze
permits finding a solution to the Dirichlet problem with the aid of the bound~- -
ary values of the normal derivative of the unknown function which are ob-
tained as a solution to the functional Equation (5.3). In this connpection
we must bear in mind that in practice problems are often encountered in
which it is of interest to find namely the boundary values of the normal
derivative. This also explains the compilation of special tables [15] for
computing the boundary values of the normal derivative. For such problems

the method of V.D. Kupradze has the advantage over the above-described method.

Let us make several comments [22-24] concerning use of the discussed

approximate method for solving the boundary value problems.
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Following [16] the system of linearly independent functions will be

termed reliable if

lim G,=G>0 (Gn=G (P1: P2+ --erFn))

n—r oo

When G = 0 the system will be termed unreliable. Let us prove the theorem.

Theorem 5.1. The system of functions {o,(M)} is unreliable, i.e., for

any >0 we find such a value for N that for any n>N the following inequality

will be satisfied,

G, <e.

We shall assume that the points % (1 =1,2,...,n) are renumbered in such a way
that (%, %41)<h , where A >0 when ">, It is clear that on the
strength of the everywhere dense distribution of points X, this is always

possible. From (3.8) we find for an even n = 2k

k
G, < H G, (01, Wy;)

i==]

and with odd n = 2k + 1.

! k
G, < j] o}, ds n Gy (g1, 00y)- L2
5 i=1

For G, (wy.,, ®,) we obtain

Gy (g1, 0yy) = JJ Wiy dsg wy; ds— ( H Wypy Wy ds)z'
) . .

s S

Taking into account that

(5.13)
1 1

7 (g M) 7 (s MIFEM) "

Wo; 1™
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where
[E(M) = r(xgi_y, M)—r (g, M) | <1 (%354, %) < B,

for Gz(@u—p wy) we find with an accuracy up to terms of higher order of
smallness with respect to h

Gy (wyi—y, W)=0(h) (5.14)

and for Gﬁ we will have

G,=0(h).

Since h— (0 when n-» oo, , then from the latter approximate equation there

follows the reliability of the system {w,(M)}.

The above statement can be directly carried over to any case of the
potential system [17]. Thus, we can show that if S and S1 are not tangent to

one another, then any potential system is not reliable.

To check the rate at which the Gram determinant approaches zero, we
carried out the following numerical experiments for the two-dimensional case.
S is a circle with radius 1 on which we are requivred to orthonormalize the

system of functions {Inr(x, M) (@ = 1,2,...,28), where x€5,M g a concentric
circle with radius 2. The points x; are distributed on sl(l)

T
vy intervals. We computed the elements of the Gram determinant of this sys-

. . . . -6
tem. Integration was carried out with an error that did not exceed 10 ~. The

uniformly in

rank of the determinant with an accuracy up to 10_9 was found to be equal to

9, i.e., after sorting out all possible determinants of tenth and higher
‘orders we were unable to detect any among them that were nonmachine-zero

(the computations were carried out on a high-speed electronic computer BESM-2).
Below we cite the maximal values of E;' of the determinant of ith order for

i=1,2,...,9:

£
(V5]




G,=3,8 G,=9,7 G,=9,5 G,=5,9 Gy=0,4
Gy=2,7-10"2  G,=9,2-107* G;=2,8-10"° G,=37-10"8
Then the points x, were taken uniformly on the concentric circle Sl(z)

T
with radius 1.1 and interval i - The number of points n was equal to 24,
Below we give the respective values for the Gram determinant Gi i=1,2,

ees 324y for this case

6,=3,6 G,=80 Gy,=95 G,,=18 Gy=1,6-10~2 G, =1,5.10~%
G,=84 G,=130 G,j=38 G,,=0,7 Gig=3-10"% G,,=2,9.10-"
G,=28 G,=184 G,=13 G,,=02 Grg=5,1-10"* Gpp=4,9.10~"

G,=48  Gg=236 G,;=47 G;o=8,9-10"% G,,=8,6-10~° G, —4,9.10-*

From comparison of the respective values of the Gram determinant it is
obvious that in the second case the values of the determinant are much
larger which, as will be shown below, makes it possible to orthonormalize the

respective system more exactly.

¥inally the points x, were taken uwniformly dlstrlbuted on a concentric

cirele Sl( )

of points is equal to 24, Let us derive the respective values of the Gram

with a rad:Lus of 1.05 and the same interval 12 . The number

determinant Gi A=1,2,...,24):

G,=4,1 G, =47 Gy3=2,9 Gi=0,5

G,=4,7 G, =4,6 Gyy=2,5 Gy =0,3

03=4,8 Go =4,3 Gl5=2’0 021=O,2

G,=4,9 G,p=4,0 G,=1,6 G, =0,1

G,=4,9 G =37 G,=1,2 Gpe==0,08

G,=48 G,=3,3 G,3=0,8 'GM==O,03

The results of these numerical experiments show that with the approach

of the auxiliary boundary S1 to the fundamental boundary S, the correspond-
ing Gram determinant is increased. Let us note that this proof of reliabil-
ity of the systems of potential functions is substantially based on the con-
stancy of the auxiliary boundary Sl' Otherwise, from Equation (5.13) we can
never derive (5.14), since for some points MES of the functioms, r(xsi, M)
and £{(¥) may have one and the same order of smallness.
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A second comment touches on the choice of algorithm for orthonormali-
zation of the system {®;(M)}. As was shown in 54, the orthonormalization may
be accomplished both according to Formula (4.6) and according to Formula (4.10}.
It is clear that if the computations according to both formulas are carried
out exactly (with a finite number of digits), then the results are alsoc found
to be identical. The results will be sufficiently similar also in the case
when the system to be orthonormalized is reliable. But, as was shown above,
the system {9,(M)}, just as any potential system, is not reliable. Therefore,
for practical application of the approximation method for solving the boundary
problems it is extremely important to choose,of the two procedures for ortho-
normalization, that which will give the more consistent procedure for the
computation (will guarantee a larger number of reliable digits). Although the
computations according to Formula (4.10) are easier to program on the computer,
since for computation of the determinants there already exist prepared stand-
ard subprograms, nevertheless, as will be shown below the orthonormalization

should be carried out according to Formula (4.6), because the respective

3%

algorithm is significantly more consistent relative to rounding off errors. /3

We shall analyze the normalized functions (M) as vectors (with origin

at 0) in the space L, and denote by % the angle between the vector wﬁﬂd)

2
and the hyperplane passing through the vectors ®i, @ ..o» Wpy . Tt is
known [16], that the determinant (4.11) is equal to the square of the volume

of the parallelpiped constructed on the vectors ©;, O, ..., w0,
n
Gn= H sin® %
i=l

Thus, for the denominator of Formula (4.10), we find

n—l
d,=VG,_,-G,=sine, [[ sin® ;.

i=l1

As far as the following sum is concerned

n—1
Z (mni cph.) Prs {55:15)
k=1
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it represents [16] the projection of the element w on the subspace of the
vectors @19 ¢2, ceey ¢n—l or on the strength of the equivalence of the subspaces

of the wvectors ¢l’ ¢2, cens ¢n and Wy, @ e O s (5.15) represents the pro-

29

jection o oP the subspace of the vectors w wn. Hence, it is obvious

12 Yoo eees
that the denominator in Formula (4.6) is equal to

1/f 2 ds = sin'a,.
S

For othonormalization of n elements we find it necessary to divide by

d,= ii'ﬁnaﬁ
i==1

For the ratio d :d_ we find
n n

(5.16)

From the latter expression it is clear that Formula (4.6) gives a significantly

more consistent computational procedure than does Formula (4.10).

We attempted to orthonormalize the system {Inr(x, M)}, x€S® (i =1, 2,

.., 28) with the aid of Formula (4.6); however, an emergency halt took place
in the machine. It was found that this occurred when dividing by jﬁﬁldk. This
fact (taking into account that all the Gram determinants of tenth order are
equal to zero) agrees well with Formula (5.16) from which it follows that
Formula (4.6) can be used for the fixed number of digits with which the compu-~
tations are carried out, to orthonormalize approximately twice the number of
functions as with Formula (4.10). It is clear that if the orthonormalization /37
of a sufficiently reliable system can be carried out both according to Formula
(4.6) and to Formula (4.10), then this latter gives a significantly rougher
result. To confirm this we carried out orthonormalization of the system

tinr (e, M), x6s® (1 =1, 2, ..., 24). Table 1 gives the coefficients of
(1) . for the function ¢22 obtained from Formula (4.10),

22, i 2)

and the same coefficients A22 i obtained from (4.6).
>

orthonormalization A
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In the third and fourth columns are given agiﬁ=f¢g)@?‘ds and af; = f@?g

2

92 ds, where ¢V and ¢{¥ are orthonormalized functions obtained respectively

with the aid of Formulas (4.10) and (4.6).

TABLE 1
{ AR AR aly) ; ald) ;
1 1,5699 1,5747 1,37 0,9993
2 —1,7303 —1,7267 0,15 - 0.0080
3 0.7977 0.7967 —0.,02 —0.0030
4 —0,1783 —C,1772 —0,13 0,0009
5 0,1160 0,1195 —0,20 —050007
6 0,0325 0,0258 —0.22 —0,0007
7 0.0264 0,0541 —0,25 —0.0005
8 (., 1276 0,0451 —0,20 —0,0005
9 —0,2289 0.0477 —0.35 —0.0005
10 0,7624 0.0468 0,13 —0,0004
11 —0,9413 0,0471 —0,37 —-0,0004
12 0,6365 0,0469 —~017 —0,0003
13 0,1307 11,0470 0,06 —0,0003
14 —0,3814 N, 0469 -0,19 —0,0003
15 0.3762 0,0472 —0,07 —0,0003
16 00596 0.0465 —0.05 —0,0003
17 0.0032 0,0492 —0,10 —0.0003
18 03059 00412 0,05 —0.0006
19 +.0),6559 0, 0685 —0.31 0.0046
20 1.0015 —0,0156 0,17 0,0020
2] —0.4316 0,2664 0,00 £.0020
22 —0,1754 —0,3722 0,00 —0,0009

We see the Formula (4.6)

gives a significantly more

ization than does Formula (4.10).

In Reference

exact orthonormal-

[16], the phenomenon of ''stability" was first invest—

igated for systems of functions, and the class of systems was indicated

that are termed reliable for which the Ritz method remains stable.

Leter

[19] S. G. Mikhlin indicated a significantly wider class (strongly minimal

systems), for which the Ritz method retains its stability.

The system of

functions {®;} is strongly minimal in HA [20] if the least eigenvalue of the

n order Ritz matrix is bounded below by a positive constant which is

independent of n.

S8ince the potential systems which we investigated may be
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used as a coordinate system in the Ritz method, then it is interesting to know /38
if they are strongly minimal. Let S and Sl be concentric circles and the
points xi(i =1, 2, ..., 2N), where N is even, be distributed uniformly on Sl.
The following assumption is valid. The systems {lnr(x, M)} and {é%lnr(n,ﬂﬂ)} are
not strongly minimal in HE if E is an identity operator. Since when HE (HE
coincides with LZ)’ the Ritz matrix coincides with the Gram determinant, then
it is confirmed that for any € > 0 we find a value of N such that the eigen-
value {with the smallest modulus) of the Gram determinant of 2Nth order is less
than ¢. In view of the identify of the proofs, we can give a proof for the
system |inr{x;, M)}. We must prove that the least eigenvalue of matrix (4.11)

is as near to zero as desired.

It is easy to prove that for the given case [S and Sl are concentric

circles, xi(i =1, 2, ..., 2N) is distributed unifromly on Sl)] the following
equations ave valid:
fwi Oc g dS = fwi w;_y ds,
fijﬂk==fw§wnds for |j—r|=|&—nl,
k=0, 1, ..., 23; i, j,rEn=1, 2 ..., 24; k<i; <i+k>= i+kmod (n—1)

and therefore the Matrix (4.11) has the following form:

I a;, a,, ..., a,
T N T
! a, a, ..., a

where a = (s =2, 3, .., N),

aLn+2 - X

a3=f‘ Inr(x;, M)lnr(x;y,—;, M)ds,. (5.17)

The eigenvalues of this matrix are equal [18] to

n

=y ae (k=0 1,.,., n—1), (5.18)
=1
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2kx . . 2km

where €,=¢CO0S . + ¢ sin . When k = N we find

n

n
Ay= Z (=D ta. (5-19)

i==]

Taking (5.17) into account, we find

Ay —;= flnr(xl-, My[inr(x;y, M)—Inr(x; iy, M)l ds=

2R ] 1
- ) f,l-nr(xi, M) [-gsiln (X4 M)+O(—;l—)] ds, (5.20)

a
where R is the radius of the circle Si ‘;;S';" is the derivative along the

tangent to the circle Sl' The left-hand side of (5.20) does not depend on i;

therefore, we will assume that j = 1

am—-a;--“’—f— Inr (x,, M)-m— 0 (¥ie MH—O( )
i
or

ty— = 2R finr e an i (e, M) ds o(—l-;)
n n

1

a - ..
a*__ad_._?%f_ Inr(x, M) ~5§~-]n’(x4v M) ds+0 -’-;-2.)

1

--------------------------

..........................

Inr(x,, M) —--S._ Inr(x,y—s, M)ds-q—O( )

Appy oy gy 7
1

2nR J

oy — ayr _..235_- f Inr (%, M) PERLIZCN M)ds+0 (-~)

Substituting these latter equations into (5.19), taking the evenness of N into

account and the trivial equations

) ]
"lnr(xl, M) _?._ Inr (x5, M)ds=— Jlnr(x,,’M)_—ln r(Xp,0250 M)ds
i as 98,

1
(S:—: L2..., iv—),
‘ 2

we find the asymptotic equations

)‘N:O('l—): : (5.21)




We can show that for even N/2 the absolute value of the characteristic

number RQL will be as small as desired. In fact

N

n 2
A= kZ:l () an“=z [ @y — A —g) ~ (@5~ o) |-

k=]

-
-

The real part of the complex number A is equal to zero because of the

2

accuracy of N/2 and of the trivial equations

am—g=a4 ("],!‘ u—-k); 04h=a4 (.._/‘L 4-1—-1:)—-2 (k =1, 2.., .._jy_.) ,

b4

and the imaginary part

F=1
(6)

N
Im( l_%/__)..-—:- Z ("' 1)""'1(12"_,?.

Proof of the asymptotic equatioms
1

is completely analogous to the proof of (5.21).

The potential systems will be called discontinuous potential systems,
if Sl is consistent with S, i.e., if the points x; are distributed on the
fundamental boundary S. The following assumptions are valid. The system of
functions {7 (x;, M)}, where the points x; are distributed everywhere densely

. 2
on S, are linearly independent and complete in the space L7 (s).

The system of functions {w;(M)], where wg is a nonzero comstant,

(8) From the constructions of the potential systems it is clear that they
are not minimal and consequently not strongly minimal. The proved assumption
is interesting in that it gives to the asymptotics the least eigenvalue of the:
Gram matrix,
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w,(M):d—%—lnr.(xi, M)\‘ (¢=1, 2,...), x; distributed everywhere densely on S, are
2’3 |

linearly independent and complete in Lz(s).

The linear independence of these systems is obvious and is proved analo-
gously to the linear independence of the potential systems. For proof of the

completeness it is sufficient to prove that the operators

N . » ‘ d
J@(M)lnr(x, M) ds,, Jcp(M)d—n— Inr(x, M) ds,, (5.22)

s o s

transform (@€ L2%(s)) to space Lz(s) in C.

Further arguments are completely analogous to the discussions in proving

completeness of the potential systems (see the proof of Theorem 4.4).

Let us analyze the integral operation

y)= (o ke Mds,, (5.23)
;
and assume that all singularities of the kernel k(x, M) are concentrated on
the diagonal, i.e., when x = M. We know [12] that if the kernel of Operation
(5.23) satisfies the conditions

{f [|grad, k(x, M) | [ (x, M) ]+ l"dS..,}%<E, (5.24)
s

[kCe, M T Lk
{”[r(x, M)]u] ds“‘}, <F (5.25)

where by grad we denote the gradient computed accordlng to the variable x,

then the 1ntegral Operation (5.23) maps the space LP (and any 1Y when q>p')y /[4l
into the Lipschitz space Lip u with the index u, where p' is the adjocint index

(1/p + 1/p' = 1).
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It is easy to see that for the kernels of the integral operations (5.22),

Conditions (5.24) - (5.25) are satisfied in the case of piecewise-smooth

contours when A=p =2 and p < .é_.

]
The system of functions {E?ln r(x; M)} is used [1-3] for solving the
Neumann problem
Au=0 B G,

ou

5=4’(y)- (5.26)

The approximate solution to Problem (5.26) can be obtained from the expan-
gion of the function

y

9 (4)= f $ (9)ds,

LY

Yo

for the system {Inr(x,y)}

N,
¢ (9= Z ayInr(x, y).
k=1,
In fact, the approximate solution to Problem (5.26) has the form

y(z)_x;zz)

N N

T
U= E a, Arg(z— 2,) = a, arctg L%
k—i. h g( h) L . ka gy(l)-—xg),

1

where xél), Sl(cZ) and y(l), y(z) are the coordinates of the points X and y,

respectively,
Z=yW 4 iy oz = x4 ixD.
Let us analyze the system of three-dimensional discontinuous functions

3
- 5.27
{. r(x, M) } 27

where x, are distributed on the surface S. The following assumption is valid.

2—a

1
The system of Functions (5.27) is complete in 1P for p' = g for any
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x>0 , and consequently, on the strength of Theorem 3.8, is closed in

L? (p=2—a) . For proof 1ft us mention that Conditions (5.24), (5.25)are
isfi k(x, M) = ———— =2 % ' >0. There-

satisfied for k(x, M) 7 M) when p o, p.<2_“ and any «>0 There

fore, the integral operation

1
fr (x, M) P (M) ds, (5.28)

transforms the space [LP p _—_‘2_“ for any ,>( to a Lipschitz space Lip

N A e

Let the function cp(M)éLp' be orthogonal to all functions of System (5.27),
Let us prove that ¢ (M)=0. We analyze the continuous Function (5.28). On the
set of points X, — which is everywhere dense on s, this function takes zero
values, and therefore, it is equal to absolute zero on s and consequently (on
the strength of the harmonicity) in all three-dimensional space. But, from
Reference [12, it follows then that the density ¢ (M)=0. Taking into account

Theorem 3.8, we find that Svstem (5.27) is closed in Lp when L p=2—u.

§6. Solution to Boundary Value Problems with the Aid

of Nonorthogonal Series

References [25, 26] give one method for determining the expansion coe~
fficients for a system of nonorthogonal functions. The idea of this method -
involves the following (itAis described in detail in the next section). Let
us seek the expansion Y.e,8.(5) of the functions F(s) according to the

normalized system 18,.()) (k=1, 2,...). Let us introduce the symbols

n

Fa(=— )" €:gi () Fo()=go()=F(s), e=—1. .1
=0

To compute e in Reference [25, 26] it is proposed to use the formulas

i 6@2)
&y == S Fi_1 gy ds. ¢

S
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This method of computing the expansion coefficients directly may be used in

the method of generalized Fourier series, since in this lattér case the function
to be expanded is known. The numerical experiments showed, however, a signifi-
cantly slower convergence of the method of generalized series when Formula

(6.2} is used in comparison with the method of generalized orthogonal Fourier

series.

In the present section we shall show [33] such a modification of the
method of functional equations on the basis of Formulas (6.1), (6.2), the

application of which will not encounter the difficulties mentioned in References
{2z, 2417.

For concreteness let us analyze the method of functional equations for the

two~dimensional internal Dirichlet boundary value problem.

Au=0 in G,
uy
s - f(s)v

(6.3)

where s is the boundary of the region G; f(s)‘is a given function. The essence

of the method of V. D. Kupradze involves the following. In the sense of the
metric Lz(s) the best expansion is constructed for the normal derivative

f?ii‘@{ﬂ of the unknown function according to the functions of the complete /43
égdslineaxly independent system {107 (¥ 8)}={w,(s)], where r(xk,s) is the distance
between points %, and s; {x,) is a set of points distributed everywhere densely

on the auxiliary boundary s, which completely includes the region G. If we

have such an expansion, the solution to Problem (6.3) can be found from the

fundamental integral equation of the theory of harmonic functions

u(x)= J‘cp:(s)lnr(x, s)ds - [.f(s) -.g;z_ Inr(x, s)ds, xcG. (6.4)
s S n .
We know [10] that for minimality of the expression]|¢(ﬁ-—lg;‘ahwh@)llg

with respect to the coefficients a, it is necessary and sufficient that 3, be

solutions to the system
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E:%f%@w@ﬁ:J;@mmﬁ (=1, 2,..., n), 6.5)
k=1 3

s

but on the strength of the Green identity

[¢© w,-<s)ds=ff(s> < wy(s)ds

J {(6.6)
S
and System (6.5) takes the form
n 9 6. 7)
P f%(s)w,-(s)ds = ff(s) 9 w,(s)ds. ©.7
k;‘I e 3 on

k
If we first obtain the orthonormalized system {en(®)} = { Z:‘ Ak’i“’z{S)} , where
[ —3

Ak ; are the coefficients of orthonormalization, then in the sense of L, the
5

2
best expansion of the function 9(s) will be, as we know, expansion in the

Fourier series

n n

k
by, Z Ay, 0 ()= Z €y 0y, (3),
1 i=l

k=1

n
Z by pn (5)=
k=1 k

where bk are the Fourier coefficients of the function @(s), and
n
Cp= Z Agy g bie (6.8}

On the strength of the strict normalization [10] of the space L2 and conse=-
quently the uniqueness of the generalized polynomial of the best approximation,

the solutions a, of the System (6.7) and ) from (6.8) must be identiecal to
8 = ¢ (k = 1,2,...,n).

Thus, the method of functional equations may be analyzed as a combination

of the variational method (for the normal derivative of the unknown function) m

by using the Green Formula (6.4).

n
It is clear that if we find the expansion kz:I dy 0, (5) not of the normal

derivative of the unknown function, but of its boundary value f(s), then the
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approximate solution at any point M of the region G may be found directly from

the expression (method of generalized Fourier series)

n
u(M)= Z dk ]n,(lxhy M)’
k=1

and the necessity of carrying out the quadratures associated with the use of
Formula (6.4) is eliminated.

(N

However, numerous numerical experiments have shown that for one and
the same number of functions which participate in the expansion, the method

of V. D. Kupradze gives significantly more accurate results than the method

of generalized Fourier series. Therefore, the supplemental computation
associated with using the Green formula is completely justified. For
illustration, below we cite the errors in solving the Dirichlet problem for the
function u = arc tan y-2/x-2 in the case of an ellipse with semiaxes a = 1,

b = 0.75. Table 2 gives these errors for x,¢s{® and n = 24 at the mesh points
with an interval of h = 0.1. The upper left number in each point corresponds
to the error in V. D. Kuproadze's method. Following this is the error in the
method of generalized Fourier series, and below is the error in the method of
finite differences obtained with the standard program [31, 32] (the simplest
approximation of the Laplace operator and the Kollats deflection) with an

interval of h = 0.1.

However, with an increase in the number of orthonormalizable functions

or when the auxiliary boundary S, moves away from the fundamental boundary s,

1
the corresponding Gram determinant for the unreliable system |w,(s)} approaches
zero, which makes it practically impossible to carry out orthonormalization.

As noted in §5 with concentric circles S and S1 having radii r = 1 and Ty < 2,

use of the matrix method of orthonormalization will not allow orthonormalizing

(7N

The numerical experiments were carried out with the aid of standard
programs [27,28] compiled in the Department of Numerical Methods of the

Computer Center, Academy of Sciences, Georgian SSR.
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10 of the 28 functions 1n r(xi, s) i =1,2,...,28), where x, are equidistant

points of s Schmidt's method of orthonormalization made it possible to

orthonormalize only 20 functions. It was found to be still more difficult to
orthonormalize these same functions with a circle having a radius of ry = 5.
In this case Schmidt's method makes it possible (all computations were
made on the BESM-2 computer) to orthonormalize 9 functions, and the matrix

method ~ 5.

At first glance it may seem that Formula (6.2) is impossible to use in
the method of V. D. Kupradze, since in this case the coefficients e will
depend on the unknown function ¢(s) [the normal derivative, the solution to
Problem (6.3)]. However, the symmetry of the operator of differentiation with
respect to the normal, i.e., the Green identity (6.6), makes it possible to
apply Formula (6.2) for the normal derivative of the solution to Problem (6.3)
to the method of V. D. Kupradze. In fact, if we take into account (6.2, (6.6)
and the definitions (6.1) for the coefficients a, of the expansion of the

pormal derivative ¢(s) of the solution to the Problem (6.3), we obtain

a,= f 1) o, (94ds,

az'-"; J ) _;n— Wy (5) ds—ay (w,, vyp),
,d -
G = | 1) = wp(ds— ) @y o)

i==1

Using these values of the expansion coefficients in the Green Formula
(6.4) we obtain the modification mentioned above for the method of V. D.
Kupradze. Table 3 gives, at the mesh points with an interval of h = 0.2, the
errors in the method of the generalized series multiplied by 100 (the first

number at each point) using Formula (6.2) and the modified method of
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TABLE 3
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2 3 4 6 7 9 10
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8

)
~a,
N
R
a2y
~

functional equations (the second number) for solving the Dirichlet problem in /47
the case u = arc tan y-2/x-3 and the circle with radius r = 1. In both cases

we used the functions In r(xk,s) k =1,2,...,32), where %, are distributed on

the confocal circle with radius r, = 5. Let us note that of these functions we

1
were able to orthonormalize only 5 using the matrix method.

From Table 3, it is clear that the modified method of functional

equations gives more exact results.

Thus, if the auxiliary contour s1 for any reason must be taken

sufficiently far from the fundamental contour s (for example, this may
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happen if the necessity arises for harmonically continuing the solution to
Problem (6.1) sufficiently far from s), then in this case it is feasible to

use the modified method of functional equations.

Analogously we can modify the method of functional equations also for other

boundary wvalue problems.
Let us indicate one possible reason for the high degree of accuracy
in the method of functional equations in comparison with the method of

generalized Fourier series.

The error e(x) of the approximate solution to Problem (6.3) at point x

in the method of generalized Fourier series is equal to

3(’;')‘-: J(f(s)“ ; ay Wy (5))dG(x 2 ds,

where G(x,s) is the Green function, and for its computation by using the

Buniakowski-Schwarz inequality, we obtain

< [[ro- 37 de]as 2] o 6.9)

For computation of the error ¢, (x) in the method of functional equations

le, (0] < { J‘ [ ?(s) — i: a, wy (8) ]2ds} { J‘[lnr(x,s)}zds };— (6.10)
k=1

s s

!ﬂ‘i—l

We know that the Green function G(x,s) has a logarithmic singularity,

and therefore, in the equation

|

O Z d, v, (S)

k=1

L=[[r0=3 awe
k=1

2
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computation of (6.9) allows a larger wvalue than computation of (6.10).

In conclusion let us say a few words about computation of the error in
the method of functional equations. We know [34] that fundamental problems
in the theory of approximate methods are encountered in the following

sequence:

1. Construction of an algorithm. /48

2. Establishment of a convergence.

3. Computation of the rapidity of convergence.

As shown above, the first two problems for V. D. Kupradze's method are

solved.

For the error &™) (x)=u(x)—u™(x) of the approximate solution to the
Dirichlet problem,we find the following expression:

1
Eg‘M(x)=z; ﬂ 77,:;—5_/)‘ fe (9)— 9™ (y)] ds, (6.11)

where qﬁNL is the finite generalized Fourier sum for the function ¢(y) according
to a certain complete orthonormalized system of functions. Computation of the

difference

@) —o™ (9]

is a problem of general harmonic analysis and for its solution we must

generalize the theorem of D, Jackson [10] (see, for example, the generalized
theorem of Stone-Weierstrass [35]). We know [34] that a real a priori
computation can be obtained only in a quite limited number of problems, and there=-
fore the a posteriori computations are of no less significance, all the more
since such a computation can be obtained by machine methods and it may be [34]

used for automatically changing future computational programs.
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If we assume that ¢(s) has a finite derivative with respect to the normal
{the corresponding sufficient conditions are given in [36]) from the boundary

conditions and the Taylor expansion, we find

-¢(y)+tf<N’[x(y)l + gN) iax(y)l +0(), (6.12)

¢ (y)=
[+

where x(y) is the point of region Bi which is at a distance & from the point

v along the normal

== [~ @ dstF (9,
§

where

‘

1 d I
Fo= || oy {“**«x, 7 ] b (o) ds-

Substituting (6.12) into (6.11), we obtain

W) eyl 1 [ =b@+a™ix@g)) | M ix )
SuN (Xo). g ﬂ r(x‘,’ y; [ g -+ -4
s

6 ]
5 (6.13)

+om~¢mw]aw

It is easy to see that for a wide class of surfaces (for example, if s€A,
[36]1) and for a sufficiently small § > 0, we can take o constant and in such

case x(4)€B,. Then (6.13) assumes the following form:

o (1) = 1 l H‘mN)lx(y)l_My) ds, 447 5 1) () —

4z rx,y) (6.14)
—oF(x)+ ” SN oy o(az)] .
) rixe, y)

S
Let us analyze the space I of all integrable functions w(x), determined
in the region BO with the boundary S The norm of the element of this space

ig introduced as
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® (x<Bo)

b4

| n= | 7

where o(y)=w(x)|,, x, is a certain strictly interior point of the region B, .

From (6.14) it is easy to obtain an approximate computation of the
error &M (x) from the norm of the space M . In fact we have

| s (2@ 4 |< | J’J wM e@I—4 @) 4
! ﬂ r (ko 9) r (%0 9)

&M (x€ B) l o=
i

+0(@)+0(),

where

0®) =381 (x) | +4n | u™ (x) | + | F (%) ]
= _‘;z M]
O(O )——0 _‘2‘-" ’

M1 is the maximum of the absolute value of the first derivative of the unknown

function ¢ in the closed region B. After taking § sufficiently small, we
find the. approximate value

e(N) (x€B) Ilém ‘j u™ [xr((yx)]y)‘l’ ) ds 6.15)

The norm of the space i does not give the possibility for computing
the maximum of the modulus of error &, TIf the right-~hand side of the
computation (6.15) is small, then this still does not indicate smallness of

e |, but, if the right-hand side of Expression (6.15) is large then the error
e | at least near the boundary, will be sufficiently large. This is the

meaning of Expression (6.15).

It is also easy to obtain an approximate a posteriori computation for the

error £ (y) in the sense of the metric of the space c. In fact, if we take

(6.12) into account, we find
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) — (N)
e (y)__:u [x(g)} $ <y)—-cp‘N)(y)+ &l éx N 10 6) I50
or
| &M [x ()} < [aM [x () ]—¢(y) | +0 ()40 @),
where

e (=9 (1) — o™ (y)
0@)=e{M (y) 3,
2 M1 ’

’

0(5)=3

The order 0" we obtain from the convergence of the first procedure, i.e., from’
the condition e@?(y)—>0 . With a sufficiently small § we find the following

simple approximate computation:
e [x(y) 1] < | u™ [x () ]—b @) |-

The estimate of (6.16) is derived for the points x¢pB, , distributed on

the surface S, which remains at a distance & from the boundary s.

Let us denote the region bounded by the surfaces S and S as B'. From

(

(6.,11) it is clear that u N) (x) is a harmonic function, and therefore. on the

strength of the maximum principle, we obtain

max | (x)| < max (u®™ [x () —¢ (1.

x€B,—B"  x€3 (6.16)

Let us note that for the points distributed at a sufficient distance
from the boundary s, computation of (6.16) may give overly large values.
Passing to the limit when 0->0 , the approximate computations of (6.14) -
{6.16) become completely strict. However, for their use we must compute the

integrals of the unbounded functions [37].
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§7. Series of Nonorthogonal Systems of Functions

Many problems of applied mathematics are reduced to obtaining expansion
of the functions ?(*¥)€L,(G), where G is the region for determining the variable
X, in a series of functions of the complete system {g,(x)}. TFor convergence

in LZ(G) of the series
N

Y @M ) (7.1)

i=l

to ¢ (%) it is sufficient to obtain, from the given system, a linearly
independent system (after excluding the "extra" functions), then the orthonor-

malized system {®,(x)}

w;(x) = Z Ap, 1 9r ()
k=1

and to take the Fourier series of functions ? (%) according to the system {w; {x}} .

N
Z b; w; (%), bi:‘f ? (x) v, (x) dx. /51
i=1 G
For the coefficients afLN) of Series (7.1) we obtain
N
afV= Z Ay, 1 by
k=i
(8)

In practice, orthonormalization of a large number of linearly independent
functions involves significant difficulties. First with orthonormalization of
n-functions we are required to compute with a high degree of accuracy the
elements of the Gram determinant, i.e., if we take into account the symmetry

of this determinant, and n(n + 1)/2 integrals of the types

(8 On the numerical examples [22, 23], carried out with the aid of stand-
ard programs [27, 28], we were convinced that in a number of cases the method
of the Fourier series with a low degree of accuracy (2 digits) requires a
small number of expansion terms. However, a further increase in accuracy
significantly increases the required number of expansion terms, and therefore
a large number of functions must be orthonormalized.




| o) ;00 ax.
G
This requires a large amount of machine time. Thus, for example [22, 23],

orthonormalization of the system

(Inr(M, M)} (=1, 2 3,..., 28, (7.2)

where r(Mi, m) is the distance between the fixed point Mﬁ and the variable
M, M;€s5, MEs, s and s, are concentric circles with radii of 1 and 1.05 requires
about two and a half hours of machine time on the BESM-2 (the accuracy of

computing the integrals is 10—6).

The second difficulty is more substantial and involves the smallness of
the Gram determinant for unreliable linearly independent systems [16, 24]
(which are not a Barry basis [38]). Thus, for the unreliable [22, 23] System
(7.2) in the case of concentric circles S and Sl with radii 1 and 2 (the
points Mi were distributed uniformly on the circle sl) we were unable [22]
from the respective Gram determinant to obtain a tenth-order determinant that
is nonmachine zero (computations were carried out on the BESM-2 computer),
although we know [1] that the system (7.2) is linearly independent. Thus, to
orthonormalize ten functions from System (7.2) on the BESM-2 (39 digits, of
which 32 are for the mantissa) is impossible. We must alsc bear in mind that
the ordinary summation of the Fourier series is not stable, and the problem of
approximate determination of the functions at a certain point according to the
approximate values of the Fourier coefficients in the metric function l2 is

an improper problem [39].

From the above it becomes clear that it is important to construct

algorithms for obtaining the coefficients agN) of series (7.1) with respect to /52

i 124
nonorthogonal systems of functions. It is clear that taking the Fourier coef-

ficients as aéN) in (7.1) generally speaking, will not guarantee convergence.

Thus, we know [1, 3] that if the points M.i are distributed everywhere densely

on §,, then System (7.2) is complete in L2(s). However, if we expand the

constant C over § in a Fourier series according to System (7.1), we obtain
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N N
CmY_ aMinr (M, My=a 'y Inr(M, M),
i=1

(=]

where

a:C\lnﬂMhADd%.

-

(the integral in the right-hand side of the last expression does not depend on

the location of the point Mi on Sl)'

In the present section we discuss a new method [25] for expanding the func-
tions in a series of nonorthogonal systems of functions. In the theorem
discussed below we give sufficient conditions for convergence of the
respective series. As will be shown below, the proposed series give a slightly
better approximation in comparison with the Fourier series for the approximately

orthonormalized functions.

Let us seek the expansion Z: @;9; of the function ¢(x) with respect to the
L .
system.{¢t@3}“==h 2,...),the functions of which will be assumed normalized.

The essence of the proposed method is as follows:

The first coefficient a1 coincides with the Fourier coefficient for the

functions

a, = 'g' P9, dx.
G

The difference $—2,%; is termed the first remainder. The second coefficient

is the Fourier coefficient for the first remainder

o= gv (p—a;p,) @, dx.
G

k
The difference‘¢"“2;ﬁh¢i is termed the kth remainder. The (k + l)th coef-

. . . . . . th .
ficient is the .Fourier coefficient for the k remainder




k

S J‘ (‘P" Z %P ) Prtr dX.

Let us introduce the following definitions:

n

o™ (x)=“§oai<?z(x), Po (D=9 (), a=—1, (7.3)
a=[ o W@ @dx (=1,2,...), ¢ (@=0 (. 7.4
G

The proof that H ™ (x) HL —» (0 when sn-+>00 will be equivalent to proof of the
3

convergence of the Series (7.1) in the sense of the metric L2 G).

It is obvious from Formulas (7.3), (7.4) that with an increase in the /53
number of expansion terms in the Series (7.1) the previous coefficients do not
change, and we must compute only the coefficients for the new expansion terms.

This significant advantage (from the computational view point) is simultaneously
a substantial disadvantage of the proposed method. In fact in many cases it is
certainly known tgat the function ¢(x) is not represented in the form of an

infinite series kz @, 9, (¥), and therefore, in these cases the proposed method

of contstructing the series will not be convergent.

() =
The sequence of positive numbers “ 9" (x) HLz V(o @) e (1) (n=1, 2,...)
is monotonically decreasing and consequently has a limit which we can denote

by R. In fact {[10],

2 . 112 G(pin~1
¢"(x)|| =min cp"‘“)(x)—ancpn(x)l _—:M:
2 dp L, G (%)
9 )
| -—[ [Nt dx] ,
' L
? S
where  G{%;, P ..., 9,) is the Gram determinant of the function |¢,, ¢, ..., %,

We can also show that for any €¢>0 we find a finite NO such that the

following inequality will be satisfied

Y @™, g <e,
RN,
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where (9 %) is the scalar product of the functioms ¢ and . In fact, for any

¢e>0 , we find an N, such that

0

2 - (7.5)
| —R= Y @M, o)

g> H ] (NO) (x)
k=N,

Taking into account the notation of (7.3) and (7.4) and the normalization of the

system {%i¥) ), for any ¢>0 we find an N_ such that when S>N, we will have

0

> ol = el =] [ [, amte [

s+1 2 -
"’J [Z a; ¢ (%) } dx
g Li=o

—a, f oty (1) dx ! ~a,,.
G

G
= !"‘" 2a,,, [ ) (x) @oyy (x) dx —
G

Thus, we find that for any ¢>0 and a whole(finite) N we find an N0 such that
P (W)= () +1P (¥) (N,<S, r<N
r () ( 0 0+N)y (?»6) f§4
where
i ) .
H 7 (%) hL,<el. (7.7)
Substituting (7.6) into (7.5) we find
hind N0+N Nn‘{’N
e>§: @* Ppy)? > z: @P ppgy)® = (") 9140)"+
k=No k=N0 k::No
(7.8)
No--N Nog4-N
+ ) g+ 2 Y @) (0 @),
k=N, k=N,

Using the Buniakowski-Schwarz inequality and taking (7.7) into account,
the second and third terms in the Tright-hand side of Expression (7.8) for any
finite N can be made as small as desired and therefore, we ultimately find that

for any ¢,>(0 and N we find an NO such that
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No+-N

(9, Ppiy)? <&y (Ny<r< Ny-+N).
KW, oo ' (7.9)

Thus, the difference between the expanded function ¢(x¥) and its series
id

Zkaicp‘- () is "almost" orthogonal to as large a number of functions of the system

F—

lo;(*)} as desired.

We shall assume that the function ‘P(x) and thesystem{ ¢, (x)¥(i = 1,2,...)
satisfy the following conditions: for any €0 and NO we find coefficients

bk(k = NW NO + l,...,NO + N), such that

N+ N
”CP(') (x)— Z by, P (X)

< (7.10)
k'-—No
No+N
Y. <M, .11
k=N,

where M is independent of NO and N is constant, and r is any whole number

satisfying the inequalities No<r<Ny+N.

According to the familiar Muntz theorem [10], Condition (7.10) for a fixed
r is satisfied by the system {xkt} (i=1, 2,..)when kl>——l~ ’}mekz = o ’::1, 7:7
=0, ywhere the prime denotgs omission of possible ki = 0. The same condition
for a fixed r is satisfied by the so-called potential system [1,23]: In other
words, both the potential systems and the system (x*1) possess the property
that, after eliminating any finite number of functions, they again become
complete in L2. We must however, mention that in inequality (7.10) r depends /55
on N. In fact, after increasing N, as follows from (7.9) we must increase NO.
Therefore, we can never state that for these systems inequality (7.10) is
satisified. Satisfaction of inequality (7.10) depends both on the system

{9, (x})}, and on the expanded function @(¥) .

Condition (7.11) when NO = 1 is satisified by the Fourier coefficients

according to the complete orthonormalized system (the equation of closure).
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N
The following theorem is valid. The series ) a;¢(x), where the a, are
i=]

computed from (7.4), of functions ¢(x) with respect to the system {@i(x}}9
which satisfy Conditions (7.10) and (7.11l), converges when N =+ « to this func-

tion in the sense of the metric of the space LZ(G)'

In fact from (7.9), (7.11) and the Buniakowski-Schwarz inequality we
obtain

No-+-N

Y 6@, ear) < VMe<ey, (7.12)
k=N,

where the bk satisfy the condition

Not-N
PED= Y by ()

k=N,

<54) (?.13)

33 and 84 are numbers as small as desired.

From (7.12) and (7.13) we obtain
(", o) =" | cp(')“L’ <e,,

where € is a number as small as desired.
Condition (7.10) of the proven theorem contains the function ®(r>(x) and
consequently it is difficult to prove. Therefore, the following assumption
is of interest. If the function ¢(x) and the system {¢i(x)} (i=1,2, ...)
satisfy the conditions: for any whole finite N

N, + 1, ...), such that

0 and any u(x) € L2 we find

coefficients bk(k = N

0° 70
n
lim Jlu(x) — b9, (x) I| =0, 7.10
oo kz;on?h() 9 ( 1)
, i< M, (7.11)
E=N,




where M is a constant independent of NO; for any z > (0 we find an n_, such that

0
Ah < g
k:—?';:-l-l (7.14)
where
k k
Ah= Z ai(‘?i’*?h-l-l) (2°P(n°) + Z a'f l((Pi, (pk—{-l)’
i=nyt1 j=n¢+1
then the series /56

n
',
E ; a;9; (x),
i=1

where aj are computed from (7.4), converges on the average when ,_, .. to the

function 9{x).

In fact from (7.5) we find that for any ¢>( we can find an n, such that

0
€= Z @™, <Ph+1)2=§_: (@ ("°):; Prt+a)® + Z (e® — o), )P+
k=zn, k=n, k=n,
1257 @), @) @ — o), gu) = Y @, @i+
k=n0 k:no
S k 2 o5 k
oy
+ 2_: ( Z a9 CPh-H) +2 Z (‘P(”"), °Ph+1)( Z ai%’?k‘u)'
k=ng+1" i=ny+1 : k=ny-1 i=ngt1
From (7.14) and the last inequality we find that for any &>0 we find
an 1, such that

Z (¢ ), @hyy) <.

k=n,

Using (7.101) and (7.111) for the function CP("")GLQ when NO = n, we obtain

‘P(n") (® — Z by @y (%)

k ==y

z bi<M
k.ng

|
lim ! I —o0,
n- | L,
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9

or using the Buniakowski-Schwarz inequality and the theorem on

continuity of the scalar product

*o0

2_, by (™), Ppa) = (™), o)) = }

k=n, !

. 2
(o) !
¢ L

&3

<VMe <%,
where € is a quantity that is as small as desired.

‘Condition (7.101), unlike Condition (7.10), has a simple meaning: the

system {9 (®) {1 = Ny .Ny + 1,...), where N

must remain complete in L

0 is any finite whole number,

o+ Let us prove that the system {Inr(M;, M)
of discontinuous potential functions [22, 24] where M€ S and M,€S satisfies
Conditions (7.101) and (7.111) for the space Lz(s). Let the function

TM)CL () be orthogonal to all functions of this system. We must prove

g,
L1
=

that YM)=U , Let us analyze the integral operator e
S Inr (M, M)y M,) dsﬂ1 = (M)
N

which transforms the space L;(5) (Y (M)€L,(s)) into the space Lipu (‘% <%—)$

(@ (M)ELipa) * The continuous function ¢ (M)takes zero values on the set of
points Mi that is everywhere dense on S ( in view of the orthogonality of

YM) to all functions of the examined system), and consequently it is equal teo
absolute zero on s, and on the strength of its harmonicity, everywhere outside

s also. But, the potential of the single layer flnr(Ml, M)t (M,) ds,
S

1 is then
identically equal to zero, when its density v (M;) identically equals zero. Let
us |now show that for any €-0, u (M)€L,(s) and N we find coefficients

0
bk(k=N N, + 1,...,N. + N), such that

0> 70 0

l Not N :
| u (M)y— z b, Inr (M, M) “L,(s) <e.
k=N,

- € We bear in mind the known theorem that if ¢»~% and ¥»~¥. then
(¥ Ya)=(9>'})
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On the strength of the proven completeness of the system being analyzed,we find

coefficients €, (k =1, 2, ..., N ), such that

k

u(M)—-ZlCllnr(M,,M)“L() 5

Since the points are distributed everywhere densely on s, then from any point
y P

Mj (3 = 1,2,...,N1) we find a point Mrj such that rj > NO and
Inr(M;, M) —Inr M < .._e.._,
! MeyM | = 3,6

where (;_—:m?x €)1 . Taking this latter inequality and the Minkowski inequality
into account, we find

| NiN
u (M) -_k=1v b, Inr(M,, M) ”L,( )

Ny
u (M)— Z C;Inr(M;, M)

) ”L,< s

No+ N
+“Z C;Inr(M,, M)— Z;, bulnr (My, M) “

LI(S)'

0*ee o NO + N) the following values:
[ C; whenM,=M,,

N:I-r}axrl"‘No, bk— 1 O when M;FFM,I

Afrer taking for N and bk(k =N

we find 58
l Nn+ N

v ou(M)y— Z b, Inr (M, M)H -——+“ zc,.nnr(Mi. M)—

I/"

Now let us proceed to proving (7.111). For the system {Inr(M,, M) we
cen prove a significantly stronger assumption: for any function u(M)€L,(s), any

NQ and any ¢>0, we find such coefficients bk k = NO,... s NO + N), that
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u (M)— § bklnr(Mk,M)” <e (7.10,)
=N, Ly(s)
and
Not-N (7.11,)
Z b <e.
k=N,

Let us represent u(M) in the form of a potential of the single layer

u(M)= XV(M) In r(M; Myds_,
p M
and substitute the integral in the right-hand side by the Riemann sum and prove

that for any €0 we find an N such that

N 2
A= J [ fv(M_) Inr (M, M) ds; —-”Z hyy (M) In r(M, Mh)] ds, <,
o k=1

s
. t
where hk is the length of the k h segment dividing the boundary s, in which
we take the point Mk Taking into account that the points Mk are distributed

everywhere densely on S, and ’\);(s) is a continuous function, we obtain
—_— — 2
A:‘J‘ [ ]‘v M) Inr(M, M)dsz] ds_—
M
S s

N
-9 kzzlhhv.(Mh)J-lnr(M, M) |v(M)InrM, M)ds_ds,+
— P
S

s

N
+‘Zl Zl By (M) B v (M) f Inr (M, My)inr (M, M) ds,=
k=1 = .

=J [ fv('lVI) Inr(M, M) ds;]2 ds_—

g J v (M) flnr(M, M) J’v (M) Inr (M, M) ds—ds,, ds~, +

S s

S
+e,F ﬂv (M) v (M) J-ln'r (M, B0} Inr (M, F1) ds, dsds.+2,=¢,+e,
§S s




where €y and e, are numbers as small as desired. Thus, as the coefficients bk

we can take the numbers #,v(M,) and therefore,

No+ N No+- N N+ N
- E; KL (M) < AW Z By V2 (My) =h™) [J.yz (M) ds”—{—ea]
k:‘:.No k= ; k=No s
’ (N)
where €q is a number as small as desired and K “Lni}jvh" . Since when

Ne> o 4M-gs then from the latter expression there directly follows (7.112).
Satisfaction of Conditions (7.102), (7.112) makes it possible to prove the
following assumption for the system {Inr (M, M)}. If for any e>0 we find such
an N that

N
HN A, <e,
k=;,:+1 (7.141)
then the series
n
}: a;Inr(M;, M),

\_
I
-

where a, are computed from (7.4), converges on the average when #n->o to

the function 9(). In fact, from Condition (7.141) we find

CVe >ChM Z 4, > Z bk (:P(’fo)’ q’h-&-l): q;(”o) +.e ,

N N l
k=ny+1 k=ny--1

2
L,

where ¢.is a quantity as small as desired and

T ‘/ fv2 (s)‘ds.

Thus, we find that the norm of the functions q;,(n;,) can be made as small as

desired.
Conditions (7.10), (7.11) are sufficient but not necessary conditions

for convergence of the proposed series. Thus, for complete orthonormalized

systems, Condition (7.10) is not satisfied. However, for these systems the
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given series (in this case they coincide with the Fourier series) converge,
Let us also mention that the difficulties in orthonormalization arise namely
for systems which satisfy Condition (7.10) (not minimal systems [40]), and
therefore, for such systems construction of these series has an advantage over

the Fourier series (in the sense of practical application).

A trivial example of the system which satisfies Conditions (7.10}, (7.11)

can be constructed .in the following manner. Let Pl’ P,... be an arbitrary

2
infinite sequence of increasing whole numbers, limP,=w. From the orthonorma-

i~
lized complete system {¢,(x)} we can formulate the following normalized system
r
{$:(x)}, where ¥;(x)=9,(x), j=i— ) P,, r is the greatest whole number for which
r k=1

0 e
Po<i-
k;{ i

The system (¢,(x)| has the following form:
{91 Poreees Ppys @i Poreens Ppys Par Poseeey Py Pro Poroeele (7.15)

It is easy to see that when JimP,=w, it satisfies Conditions (7.10), and

[~ 00

(7.11). Let us analyze the system {<I>i}

{P1s @aveees Ppy s Pnys Pty oo Ppos @nyy Pgtls oo Ppyoece b (7.16)

where ni, Pi are whole numbers, and the system {¢i} is orthonormalized. We
can show that the coefficient of the series computed from (7.4) for the func-
tion @S (s is an arbitrary whole number) of the Series (7.16) coincides with
the Fourier coefficient for the function <I>S, if <I>s was first encountered in
Series (7.16); and is equal to zero is @S prior to this was encountered in

Series (7.16). 1In fact from (7.4) for the first case we have

s—1
a,= [(CP*—- Z a, (Dk) q)s dx:.’ [?wsdxv
A= G

and for the second case (@S = <I>r, where r is a whole number smaller than S)

s—1
Ag== ((@*— >_J a, ®,) Cl>sdx=J.'cp cbsdx—a,J O,P,dy=0.
G k=1 e p
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Thus, Procedure (7.4) for computing the coefficients automatically
discards for Systems (7.16) and consequently for Systems (6.15) those functions
which previously already participated in the expansion. Therefore, the
proposed series for Systems (7.15) and (7.16) coincide with the Fourier
series for the orthonormalized system {%;}. Let System (7.15) have the form
19 Pres Ppy 1y Pay e Pppr Proeees Pp,_,» Pu 2R i.e., the sequence Pi is
finite Pl’ P2,...PZ and P;=co. Then this system will not satisfy Condition
(7.10), but nevertheless for it the proposed series will be convergent to
the expanded function 9(X), because it will be consistent with the Fourier
series for the orthonormalized system {g,) . Thus, as mentioned above, the
conditions of the above theorem are not necessary conditions for convergence

of these series.

We arrive at the above algorithm for constructing the series according
to the nonorthogonal functions by the following reasoning: on the strength of /61
Theorem 3.11, if in a certain subspace G of the Hilbert space H a point y
exists which is least distant from ¢€H , then the vector (¢—y) is orthogonal
to each vector of G. Taking the span of the set of normalized functions
{¢5..., 9.} as G, the element p-— 2: lk¢ﬂ and for finding the coefficients A

k
of the best (in the sense of the metrlc of H) approximation, we find the system

(Cp—-_l/, CPk)=O (k=]1 ,v veey fl)

or in expanded form

A (9 @) + o0+ A, (Pnr P)=(2, @)
APy, P2 + - 4 X (ch ‘Pz) (o, ch)
e e e e e e .. (7.17)

)‘1 (CPl'r ‘Pn)'*‘lz (@2» ?n) + . . -+ ln=(<P" (Pn)"
This latter system can be solved by iteration methods. Computation of the

coefficients of the Fourier series with respect to the system {9;} corresponds
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to one single iteration for System (7.17), when as the initial approximation

for the vector (4;,..., X)) we take the null vector A® (0,..., 0),i.e.,

a® = A4 BAO LR,

®) : . . s .
where a{) is a vector whose components are Fourier coefficients, B is a

matrix which corresponds to the following description of System (7.17)

A=Bi+R,

7.18
A=, MY, A9=(0, ..., 0), R=((, @), ..., (7, ¥n))- ( )

Let us write (7.18) in the following form:

where

0 0 ... ... 0 0
B | T O AR
@1 ) — @2 @) - - —@ooys P O
0 — (¢ §°1) “‘(‘Pa» ?1) v e = (P, ‘?P1)
8 0 0 ~(Ps P2) - - —(Pn P2
2—' .2 e o * 4 4 8 4 & o s o .

..................

Computation of the Coefficients of (7.4) with respect to the system {¢,} corres-
ponds to one iteration according to Seidel's method for System (7.18) ox to one

single iteration for the system

A=(—B)™! B,A+-(I—B,)R,
7.19)

where I is the unit matrix when as the initial. approximation we take the null /62

vector A®=(0,...,0) , i.e.,
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e == (I—B,)™ B\ +(/—By™* R,

(&)

where a is a vector whose components are coefficients of the proposed series.

Let us mention that all the eigenvalues of the matrix (I - Bl)"l B2 are less
than unicy. In fact, since the quatratic form corresponding to the Gram matrix
is positive~definite, then Seidel's method for System (7.18) or, what amounts
to the same thing,. the method of single iteration for System (7.19) con-

{(10)

verges for any initial approximation and right-hand side. For such an
approach the above theorem is equivalent to the following statement. For an
approximate solution to System (7.17) for sufficiently large n, only one itera-
tion is sufficient [it is assumed that the system {¢i} and the function ¢(x)

satisfy Conditioms (7.10) and (7.11)] according to Seidel's method.

Since computation of the elements of the Gram matrix (scalar products),
and naturally the process of orthonormalization, are accomplished with a
finite number of digits, then it is clear that the matrix corresponding to
System (7.17) will not be a unit matrix. It will somehow be '"perturbed". The

coefficients of the best approximation here will be found from the system

n

U—e) it Y eghe= (o 9) (=1 2., ) (7.20)
Rz
ke j
where e; j are small perturbations produced by round-off errors and errors in
b

computing the scalar products (in the case of the L2 space — by errors in

n
integrating). Naturally here we assume that max E:lem7|‘<l~ It is interesting
kR j=1

which series is more feasible to use in such cases — the Fourier series or
the proposed series? More precisely, what relationship exists between the

¢ . .
numb ers ]]l - a( )!I and |!A - a(A)ll, where the vector A is an exact solution

to System (7.20).

(10>Since the diagonal elements of the Gram matrix of the linearly
independent system are positive, then the positive determinancy of the respec-
tive quadratic form is not only a sufficient but also a necessary condition
for convergence of Seidel's iteration process (E. Reich, see [42]).
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Since in this case Seidel's iteration process converges more rapidly
]

[42] than the single iteration process and the norm of the matrix mix E Feps gl
i=1

is subordinate to the first norm of the vectors, then it is clear that the
first norm [42] of the vector (A--a®) 4111 be no less than the first norm of

the vector (A—a®), i.e.,

max | h;—a® N—a D |

4

= IMax
1 3

=“ A—a®

> “ A—ald
1

Let us note that both the method of the Fourier series and the method of /63
the proposed series require carrying out one approximate integration for

computing the coefficient of each new expansion term.

al? ey, dx,

= |
G

alp) = g =L o, dx.
G

(4)

(k-1) is involved in the computation of a - Therefore it is

The factor ¢
natural that its values at individual points would be taken for checking accuracy
of the expansion since

fe—1
PN @ =p () — ) dP ().

i=1

Numerical Example. In a number of cases for several regions G there are

tabulated coefficients of orthonormalization, and the expansion of the function
W’O must be carried out in the region G', in a certain sense near to G.

Thus, for example in [43] there are tables of coefficients of orthonormal-
ization for the harmonic polynomials which are orthonormal on an ellipse.

In [43] 230 ellipses were analyzed with various ratios of the semiaxis

p = b/a. The tables are used for solving the internal Dirichlet problem for
the analyzed ellipses. Let us solve the Dirichlet problem for such an ellipse
which was not analyzed in [43]. In this case it is natural to use the ortho-
normalized harmonic polynomials for the ellipse analyzed in [43] with the
value p=—3—- that is nearest to the given ellipse. Here the question arises

as to which series are used?
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When G and G' are sufficiently close, this question is 'analogous to the
question analyzed above (for approximate orthonormalization). Here we analyze
one numerical example. Let us look at System (7.2) for the ellipses s and S1
with semiaxes 1 and 0.5, 2 and 1, respectively.

2 2
{_l_ln [(2cos a;— €OS a) +(sinm,-——_l_sin ac) ]} (E=1,7,...),
: . , 2

where

%, =90° a,=270° a,=0° o,=180° ay=225° «,=45° «,=315°
tg=135°; ag=330°, tiz=150°, &1y = 120°, atyp=300°.

Table 4 gives the coefficients of orthonormalization Ak,i of this system for
the interval 0 <& <2r. Let us seek the solution to the internal Dirichlet
problem

Au=0,

2=y (@,

= arctg? — 5

s X

for the ellipse 81> with semiaxes 1 and 0.45. The coefficients of orthonormali- /64
zation of the System (7.2) on this ellipse will no longer coincide with those

above, since it takes the following form:

Z

{ _.l._ In [ (2@05 a,—cos a)? - (sin ac,—Q,45-sin o) ] }=={ 7 }

However, the functions

{(p‘}z{ki:x Ak"%}

will be roughly orthonormalized as Table 5 shows in which the Gram matrix is
given {(§, ¢;)} for the system {$:} . Table 6 gives the Fourier coefficients
a,® of the function Y(s) for the system {$:}, , the coefficients (7.4)

of the proposed series a, of the function $(s) for the system {(¢;} and the
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coefficients X of the best approximation in the sense of the metric L2 of the
function $(9) as functions of the system {¢;). &, can be found either from the
system

Z (“piv q’,) )‘l::(q)y q’,) (j—_-: l’ 29'")y
i=1 (7.21)

i
or an orthornormalized system can be obtained on s for w,= ) C,, 9, the Fourier
=]

: k
series of the function { for the system {0/} can be taken

E: b;w;

and then we can use the equations

)‘i= :Zl Ck,,-bk-‘ (7.22)
It is clear that both methods must give coefficients of the best approximation
and on the strength of the uniqueness of the generalized polynomial of the
best approximation for the strictly normalized space L2, the two systems
obtained by these methods for the coefficients must coincide. Table 6

shows the coefficients Xi, computed by the second method from (7.22). A few
words should be said about computation of the coefficients a. We know [4.2]
that Seidel's method gives the greatest advantage in rate of convergence in
comparison with ordinary iteration in the case when the equations are
arranged in order of increasing E: %, , by taking for the first equation that
in which this sum is the smallestj Therefore [see Table 5 which gives the
coefficients of System (7.21)] the coefficients a, were determined in the

following sequence:

g, Qq, Gy, Ay, Ay, Qyq, Ay, a4, A, g, G4, Q.
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From the table it is clear that both the first and the second and third

norms [42] of the vector A — a are less than the respective norms of the vec-
tor

;!b\—a =max | hy—a, |=045<1,31= max | ,—a =.—.“'l—a<°) [
Ik ,
12 l 12 l _

At = M—a, | =23<59=S"1 % —a®| = || A—a@®

el [ 2| ] = e

, 12 12 165
A—all =Y (—0a)?=0,63<56=S " (h,—a®)?= || A—a®

ji 1 kz:l(" » };l(’* %) ”7‘ a !m

The next four columns of Table 6 give the values of the functions

-4)(A4)==arctg\sﬁ::;?
x— 2

12
di(M)=3" Nlnr(M;, M)
' k=1

12 ‘
$:(M=Y"alInr (M, M)
k==

12
b, (M>=k§_:la‘,;"> In r(M;, M),

]
where Mi is the point with coordinates X;=C0sa; Y§;=sine, =1, 2 .., 12) 5t
, . . k . - . .
12 intevrior points M( ) of the ellipse s, with coordinates

M(l) (O’ "—01 9), M(2) (O: _018)1 M(3) (O, - _017)1 M“) (Or -O’G)v
IM(B) (09 _’075)1 M(G) (07 _0;4)7 M(7) (0; —0’3)! M(S) (Oy —Obz) ’
MO, —0,1), Ma9(0, 0), MU0, 0,1), MU0, 0,2).

From Table 6, it is clear that the approximate solution to the Dirichlet
problem analyzed above according to the method of the analyzed series ¥:(M)

gives more exact values than the approximate solution of this same problem by

the method of Fourier series ¥;(M). Let us mention that $ (M) is an exact



solution to this problem and Ea(A4)is its approximate solution obtained with

the aid of the best approximation in the sense of the metric L, of the boundary

2
function ¢(s) .

As noted above, obtaining coefficients (7.4) corresponds to one iteration
according to Seidel's method for System (7.2). In this case it is remarkable
that we are not required to compute the coeffficients of this system -~ the
scalar products (% ®) . This fact, in certain instances, may strongly de-
crease the number of required quadratures in finding the coefficients of the
best approximation, i.e., in solving System (7.21). In fact, let us be
required to find the first n coefficients'xi in the best approximation of the
function ¢ with respect to the system {;}. Let us take the new system
{¢:} (=1, 2,..., N; N>n) , where =9, k=] (modn) and find the coefficients
of the proposed series according to this system. It is easy to see that this
will correspond to Seidel’s iteration process for Ssytem (7.21). Here the
number of iterations will be equal to N/n, when N = mn, where m is a whole /66
number. A noninteger N/n means that Seidel's last iteration has not been carried
to the end. Since computation of the coefficients of System (7.1) requires
n2 + n/2 quatratures, and computation of N coefficients (7.4) requires N
quatratures, we may find that use of the method of the proposed series
is more convenient than computation of the coefficients of System (7.21) and
its further solution [properly, solution to System (7.21) by one of the
modifications of the Gauss method still requires on the order of n3 arithmetic
operations]. The last column of Table 3 gives the values of the coefficients
E; obtained when N = 36, i.e., three iterations were made for System (7.21)
by the method of the examined series. The coefficients a, were computed
from the formula 5;==ak4—am4%—k€g4% . The coefficients xk and 15;
concide with the five decimal digits. Further increase in the number of
iterations made no sense because the scalar products were computed with six
reliable decimal digits. Computation of the coefficients ;;' required 36
quatratures, whereas computation of the coefficients in System (7.21) would

require 78 quadratures.
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_.l —
l) B2 by b.

Then the number of iterations by the Seidel method for System (7.21)

Let us denote the spectral norm of the operator (I - B

: . h . . k.
required for decreasing the errors of zerot approximation by 10 times
Lor what amounts to the same thing, the number of single iterations for System

(7.19)1 will be equal to and if this number is less than n, then the

log,0b
iteration process with the aid of the method of the proposed series requires ~

a smaller number of quatratures than computation of the coefficients in

System (7.21) and its further solution.

TABLE 4

i i Ay i i Ay i i A

i 1 1,0407 5 4 — 4,0057 7 6 9,5446
2 1 0,3462 5 5 4,6118 7 7 10,8815
2 2 1,0968 6 1 — 0,9654 8 1 0,8797
3 1 | — 0,535 6 2 1,1276 8 2 1,2645
3 2 | — 0,5365 6 | 3 — 4,3658 8 3 — 11,0209
3 3 0,6252 6 4 1,9865 8 4 — 20,4241
4 1 | — 0,383 6 5 — 1,1420 8 5 13,6851
4 2 | — 0,383 6 6 4,7511 8 6 9,8651
4 3| —o0,2108 7 1 0,9101 8 7 9,6222
4 4 0,6598 7 2 — 0,0561 8 8 14,5257
57 1 0,9226 7 3 | — 17,5184 9 1 3,8971
5 2 | —0,7153 7 4 3,3486 9 2 4,5145
5 3 0,9654 7 5 1,0676 9 3 — '135,2959
9 4 — 1,1330 | 10 8 | —64,2106 | 11 | 11 40,7688
9 5 §,7030 10 9 - 58,6615 12 1 5,9396
9 6 33,4046 | 10 | 10 177,6990 | 12 2 2,8762
9 7 | —57,832 ! 1 1 0,9583 | 12 3 | — 246,1864
9 8 3,373¢ | 11 2 5,2064 | 12 4 — 95,7584
9 9 167,6996 | 11 3 | — 14,7569 | 12 5 30,2315
10 1 3,4206 | 11 4 | — 207,4796 | 12 6 50,5999
10 2 2,5505 | 11 5 43,0209 | 12 7 | — 2958198
10| 3 46,1256 | 11 6 14,2266 | 12 8 — 65,1761
16 4 | — 142,9701 | 11 7 10,4574 | 12 9 398,9135
10 5 33,0538 | 11 8 | — 2166044 | 12 | 10 1139,3438
10 6 — 4,5184 | 11 9 7,1679 | 12 | 11 14,3462
10 7 29,1042 | 11 | 10 374,13%0 | 12 | 12 43,1996
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TABLE 5

i i (s b)) ‘ { ‘ i s $) { i (T

1 1 0,8607 7 6 0,0243 10 8 0,0338
2 1 0,0905 7 7 0,3804 10 9 — 0,0126
2 2 06,9209 8 1 0,0702 10 ] 10 0,7923
3 1 0,260 8 2 0,0873 it 1 90,0036
3 2 0,0360 8 3 | — 0,0031 11 2 — 0,06631
3 3 10,9422 8 4 | — 0,0450 11 3 — 0,0147
4 1 0,0186 8 5 0,0119 11 4 0,0201
4 2 0,0259 8 6 | — C,0074 1 5 — 0.0313
4 3 | — 0,0463 8 7 | — 0,004 1t 6 G,0150
1 4 0,9735 8 8 0,5732 11 7 0,0315
5 1 — 0,0129 9 1 — 0,0536 11 8 — 0,0186
5 2 0,0297 9 2 | —o0,0016 11 9 £,0418
5 3 0,0085 9 3 0,0003 11 10 0,6536
5 4 | — 0,0166 9 4 29,0073 11 11 68,7044
5 5 0,8166 9 5 | —0,0077 12 1 — 0,0306
6 1 0,0295 9 6 | — 0,0666 12 2 0,0014
6 2 — 0,010¢ 9 7 0,0373 12 3 0,1002
6 3 | — 0,015 9 8 0,0113 12 4 | . —o0,0148
6 4 0,0178 9 9 0,7831 12 5 — 0,0036
6 5 0,0109 10 1 89,0020 12 6 — 0,0307
6 6 0,8112 10 2 | — 0,0054 12 7 0,0054
? 1 09,0196 10 3 0,0074 12 8 0,0054
7 2 0,0483 10 4 | — 0,0047 12 9 0,0564
7 3 | — 0,0555 10 5 | — 0,0678 12 [ 10 0,0047
7 3 0,0551 10 6 0,0323 12 1 — 0,0169
7 5 —0,0163 10 7 — 0,0304 12 12 b, 6917
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TABLE 6

k af? al? A GO |G ME) | G (M) | D (M) a

1 0,558500 0,423157 0,632909 0,603749 0,518301 0,543001 0,598301 0,632311
2 0,532666 0,68;1338 0,792195- |  0,620249 0,562604 o,'sa4391 €,613430 0,792186
3 — 0,855595 | — 0,131198 - 0,485213 0,637549 0,597411 0,601432 0,630724 0,485224
4 2,638250 . 3,898113 3,946620 | . 0,655696 0,604510 0,521368 0,648858 - 3,046624
5 1,971488 2,004124 1,801310 | 0,674741 0,624014 0,641498 10,657883 1,801316

& 2,131344 1,013516 1,163211 0,69473¢ 0,655201 0,664653 0,687857 1,163217
7 4,621686 4,511925 4,613214 0,715944 0,710185 0,709261 0,70%842 4,613221

8 0,494495 0,915716 1,121345 0,737815 0,711613 ' 0,713405 0,730897 1,121351
9 — 3,767565 | — 3,811601 | — 4,267911 0,761C13 0,724653 0,734501 0,751085 | — 4267930
10 " 2,022020 2,561700 2,881903 0,785393 0,734623 0,751008 0,778466 2.881911
1 0,383063 0,981€01 1,146823 ¢, 811034 0,754218 0,791423 0,864104 1,146831
12 ©0,428553 | — 0,410116 | — 0,495[31 (837981 0,800146 0814609 0,83t662 | — 0,495140
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§8. Nonorthogonal Series in Variatiomnal Methods

The method proposed in the previous section for solving System (7.17) /69
may be used in variational methods. In essence, expansion of the fumction
?(¥) in a series of functions of the system ||g,(x)] may be regarded as the
Ritz method for solving the functional equation E¢()=¢9(x) , which is the

identity operator with the coordinate functions {9;(x)].

The variational methods of determining the coefficients aj of the expansion
for solving the functional equations for a certain system {9;i lead [44] to the

following infinite system of equations:

8

(A1 9; Ay 9n) aj=(A3‘~'Pm Aoy (k=17,. (8.1)

)
I
SRR

where Ai (i -= 1,2,3,4) are positive or positive definite [44] operators,
and ¢is a certain known function. If the sequences {A1¢LV and 1A%/ are

biorthonormalized or, when A4, = A,, the sequence {A4;9;] is orthonormalized,

then for the coefficients aj we obtain

al= (A3cpy Aé(?k)‘ §8 o 2)

In certain instances [22], however, the system {A,p;} is not strongly
minimal and its preliminary orthonormalization involves great difficulties [23].

Therefore, the question arises of approximation solution of System (8.1). By

approximate solution of System (8.1) we shall mean the vector E(N) (QI(N)$ coey
EéN)), which satisfies the system
AN M= BN ¢ {83}

or

N
Z] (Alcpjv A2<Ph) ﬁ;'N):(A:}CPr A&@k)'{'ek (k= 1’ 2, veey N)’
i= '
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where ©(ey, ..., ey)is the discrepancy vector. For smallness of the vector

()

(@) — 5y, where a is the solution to system (8.3) when ¢=0, a!¥) are
coefficients of the best, in a certain sense, expansion of the solution to the
functional equation for the system {9;)> it is necessary that the expression
1AWy~ el] be small. However, in the case of unrelisble systems (which

are not a Barry basis [39]) the norm of the vector (@'¥—3V) may be as large

as desired but nevertheless the difference between the expanded function

N
and its approximation 3 alMg, may be in a certain metric less than the
i=]

small number e>(0 as much as is desired

I¢— i afM g, '

i=l1

<e. (8.4)

In the latter case the respective matrix is poorly defined and in its
vicinity we find a degenerate matrix. As shown in [45] without regularization
here we can obtain greatly differing solutions which differ from the normal
solution [45].

)

Therefore, we shall term the vector a' ', which satisfies inequality (8.4)/70

the c~approximate solution to System (8.1).

In the present section we can indicate one new method for obtaining.
the approximate solution to System (8.1). The essence of this
new method involves the fact that in the case of certain systems {9 (the
respective conditions for the systems will be formulated below) for obtaining
the approximate solution to (8.1) with a large N it is sufficient to make only

one Seidel iteration, taking as the initial approximation the null vector.

In the Hilbert space H, in which the scalar product [u, v] is determined in

the following manner:

lu, v]==(A,u, A0)=(Av, Amu),
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let us seek the best, in the sense of the metric H, approximate functions ¢
with the generallzed polynomial E: a;9; , From the orthogonality of the
difference ($— 2: a;9;) to any functlon ?; we obtain for determination of the

coefficients aJ the following system:

[ Z a; CPI, q’k] 0 (k=11 2’ ...,N),

j=1

or

N

Lla (4195, Aren) =(Ar), Ay
=

If the operator A, is the product A, = A5A4A6, where A, satisfies the condition

1 1 5

(AsA 9, Arp)=(4,9, A4, ),
and the functional equation
AG (lb = :P’

is given, then by denoting ASAZ = A, for determining the coefficients aj

3’
we find the system
A,T

,Za a; (A%, Aep)=(As90 A9).
We shall determine the approximate values a. of the coefficients a, using
Seidel's iteration process after taking the vector aO = (0,...,0) aé the
initial approximation (A:;‘PnAa P)
(Al‘?nAz‘Pl) ‘
I (Agpe, Ap) —a, (A191, Aspo)

u ’
: (A1 92, Az
k1
(Ayen Ayp)— 'Z:l a; (A Agon) /71
ﬂh = (A'l(ph' Achh) .
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Let us note that if the systems {Al¢1L {Az¢/} are biorthonormalized, then
the coefficients Ej coincide with the coefficients (8.2) of the function

Y.

Since

: (Alq;’ A2cph)=(A3c\a.’n‘ Ad?)»

then for gk we obtain

k—1
‘(Ax (b-- j‘l;l ae;), Az%)
| (Aypr, Ay

ap =

Thus, Ek is a coefficient of the best approximation (in the sense of the

examined Hilbert space H), of the difference

Remm1
- Z agp)=o% 1 function Cropi [10] .
of (8.5)
.k—4 k
. - (K?m Y, p)
o ¢"2a”m““%”=“¢“§:”%“ TG

i=1 =1

where G(ul,...,uh) is the Gram determinant of the function Upseres U . Since

(k—1) (k- 2
G (l*—1), (Fh) = ([l D)2 = (At ‘Achk) ,
G (94) Fe II?
then from Expression (8.5) we obtain
en{R—1) 2
(hg® =l gt | o " AP (5.6)
I w112
Thus, the sequence of positive numbers ({[¢®||is monotonically

decreasing and consequently has a limit. If we assume that the norm of the
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functions ¢; are bounded in the set both from both above and from below, from

(8.6) we find that for any >0 we find an N0 such that

Z (A, A, <. 8.7)
k=N,

But then when S>p, ,

> | (1@ P — (@™t | =1 (A, (b— }: app), As (- Z ae))

=1
s

s4-1
—{A4; (b— iaj‘?j)y Ay (b — f ap)) = |(4 (‘p"za}q’i),

=1 i=1 /=1
N

Ay (p— Zaj?’j)) s+1(A1°Pe+1v Ay(b— }_‘aﬁ, )= 0511 (A1 9541y ArPrsr) —
J=1 j=1

~(A (b~ 7 g Ag(d— }“a,sop)i—-l—sam(Alcpg“, Aota) |,
=.1

and on the strength of the boundedness of the norm of the functions ¢; from

below we have
I as+1 l <e.

From the latter inequality we find that for any ¢>( and any N we find an N’O

such that

pl=N4yl)  (N<s, r< Ng+N), (8.8)

where

.g_s) <eg.
Wyt | <e (.9)

Subhstituting (8.8) into (8.7) we obtain

NN No+N

e > Z (A5, Ay > 2 (AP, Agpp_y)® = Z (A9, Agpy_y)*+
k=N, k=N, k=N,
N,-+N
Z (Axﬂ ), Ay )2 z (Alq’() Agppy) (Aﬂ'r » Agyy)-
k= NO k=N o
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But taking (8.9) into account,we find that for any ¢>0 and a whole N we find

an NG such that

No+N (38.10)
(A, Agpyy)?<e (Ny<r<Ny+N).
E=N,

We shall assume that the system {9} satisifies the condition: for any £>0 of

a whole N and $€H we find coefficients bk (k = NO’ cens NO + N) such that at

least for one value of r

No+N
() < N
0= %" buall <e  (No<r<Not+AN) .10
k=N,
and
No-N
Z b < M, (8.12)
k=N,

where M is a constant, independent of NO and N.
On the strength of (8.10), (8.11), (8.12) and the Schwarz-Buniakowski
inequality, we obtain

No+ N

| Z by (A1 97, Ay Ppy) i <g.
k=N

Taking into account the last two inequalitites and the fact that |[|¢") }f<||¢]} /7

—

we obtain r Ny+ N
5= " @, P=lle = (A, As )  ba9i)—
ji=1 k=N,
Ny-+-N
~ (490 4 (Y ) J<eit o o
k= N,
No+N
- 3: bygpll<e -l dlle< e,
k=N,

where €y is a number as small as desired.
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Thus,we have proved the following theorem.

If the norms of the function %; in Hilbert space H are bounded both from
above and below the system {9;1 and the function Y satisfy Conditions (8.11) and
(8.12), then for the c-approximate solution to System (8.1) it is sufficient

to carry out a single Seidel iteration for the system

N(e)
i (A, P Ay o1) a;=(A3 90, 49) (k=1,2,...,N (@),
j=1

taking as the initial approximation the null vector aO(O,U,...,O),

§9. Approximate Solution to One Mixed Boundary Value

Problem in the Theory of Harmonic Functions

Let us analyze the boundary value problem

Au=0 B G,
“o= o@)+c, . (9.1
I
(% 4s—0 (=12, .., m)
J on '
I,

where G is a multiply comnected twb-dimensionalw(thyse-dimensional) region

(Figure 1), bounded by the contour (surface) I:=_§% I, and‘Gi are hitherto
G5

unspecified constants. 1If for the holomorphic function g(z) = u + iv, the

Cauchy~Riemann expresseion is wvalid

ov ou
S 9.2)

also-on the boundary of the region G, then Problem (9.1) in the two-dimension-
al case coincides with the so-called modified Dirichlet problem [461,

i.e., to find the function u(x,y) which is harmonic in G and continucus in

G + 1 under the following conditions: (1) u(x,y) is the real part of the func-

tion g(z) which is 'holomorphic, in G; (2) it satisfies the boundary condition
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U=y (s}-}-¢;, where w(s) is a continous function, and s are real constants,

hitherto not given(ll).

This problem is a rather wide-spread one. It is encountered in the
approximate solution to boundary value problems in the theory of analytical
funetions [42], in the conformal mapping of multiply comnected regions [48],
in computing fields of charged filaments located near conducting cylinders
{491, ete.

Figure 1 Figure 2

In [46], it was proven that the modified Dirichlet problem with one of

the arbitrary constants g specified has a unique solution which can be

(12)

represented in the form of a double layer potential. The integral

equation for the demsity in this case can be assigned such a form that the

(1D In order that the Problem (9.1) coicide with the modified

Dirichlet problem [46], instead of Condition (9.2) it is sufficient to require
satisfaction of the condition Yfﬂ_ds==(fﬁ ds .
J os n
_ (12) This solution satisfies Condition (9.2) in the closed region
G = (G + S, Hence, as a result of the uniqueness of the adjoint function

‘du
vix,y) we have 5;d$=0. On the strength of the uniqueness theorem for

I
Problem (9.1), this means that in the two-dimensional case Problem (9.1) is

equivalent to the modified Dirichlet problem.

96

174



respective homogenous equation will not have a nonzero solution. However,
practical solution to these integral equations, in spite of their Fredholm
character (in the case of regions bounded by Lyapunov curves) is made more
difficult, since the kernel has a variable indeterminancy of the type 0:0
and this limits the accuracy of computing coefficients of the linear system

by which the integral equation is replaced in the approximate solution.

In [47] for the approximate solution to Problem (9.1) (when c, = 0) it is
proposed to use the method of finite differences. The integral conditions
at the boundary are replaced by the finite-difference approximation, and imstead
of the contours I'; , we consider the rectangular contours I/ (Figure 2)

and the conditions

ou o
[ as=o. —
r;
Hence, from the harmonicity of u there follow the integral conditioms

(9.1). Such a replacement of the contours represents definite convenience

from the viewpoint of programming the solution to the respective finite-
difference system. However, we must mention that the matrix of this system

may be singular in this case (in [47] the question was not investigated

as to the solvability and uniqueness of the solution to the obtained finite-
difference system). Therefore, these integral conditions are more feasible

to analyze namely in the form of (9.1), i.e., on I; . For this from all

the interior points of the region, the distances from which to the boundary

I'; are less than v/, where h is the grid-point spacing and v is a certain
constant (for example, v<)'2) , we must drop the normal on [; and the points

of intersection of this normal with I, must be analyzed as points of the

quadratic formula for the integrals (1)(13). It is easy to prove that

(13) The other terms in these formulas will be one order of magnitude
rougher than in the formulas from Reference [47]. However, it does not
follow from this that the error in solving the proposed system will be
greater than the error in solving the system used in [47].
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the matrix thus obtained of the finite-difference system on the strength of
its indivisibility (with a sufficiently small h) will satisfy the conditions
of the familiar theorem of Olga Tausski [50] on the nonsingularity of the
matrices (it is assumed that at the interior and boundary points, regular
finite~ difference approximations are used), namely the diagonal term in

each vow in absolute value will be no less than the sum of the absolute
values of zll the nondiagonal terms and in some rows (for the points near the
contour 1.,) the diagonal term will be, in absolute value, strictly greater

than the sum of the absolute values of all the nondiagonal terms.

For practical solution of this system it is necessary to indicate (if
possible) the converging iteration process, because the elliptical finite-
difference systems as a rule are solved by iteration methods. Reference [49]
gives an algorithm for solving Problem (9.1) when m = 2 and ¢y = 0 (doubly
connected region), which assumes knowledge of the function A(2), which is
infinitely sheeted, and conformal mapping of the given doubly comnnected region
onto a strip. This algorithm is quite complex and is feasible to be used only in
those ‘cases when Q(2) is written explicitly (for example, when the doubly

connected region is a ring [49]).

We can show that the solution to Problem (9.1) can be constructed

with comparative simplicity by the methods analyzed above.

Let u (i =1,...,m) be the solutions to the following boundary value
problems. :
Au;=0 B G, y

[, |

Atyy,=0 8 G, ,u,,,“' —0 () (9.3)
r *

where ©;,; is the Kronecker symbol. Solution to Problem (1) will be sought in

the following form:

m—_};l
§ e s
i=] -
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where cm_*_l =

integral Conditions (1) we obtain a system of equations

m

Ol 41 .
Z G'ln I=J, (;:'1 ds (]:lv ?! seey m);

[==

Iy
where
_[_%EL ds, -—J._%L_tz_ds,,,,, _[d‘;‘m ds
n n J dn
I, Ty Iy
_["”1 d _f"% os, ... —[2%m g
on ’ J on n
I', rz 2
_J"“xd, {04 g4 ,_J iy
on on n
m I m
T ou:
( i = _5‘]" ds)
n
T,

:(r!f, i)

1. Then to determine the constants ¢ (i=1,...,m) from the

(9.4}

From the principle of the maximum it follows that for the inmer normal

we will have

ou,

; ’ ou;
on |I',

iy

We know (see [52], page 20) that with sufficiently smooth contours
:‘:O (ir j=17 ?, cevy m) . But Since ui‘ =0 (l‘=¥:’)7
1

(surfaces) grad u

I“, i

grady, |  du

> i==j).
- (>0 (D)

i

From the latter inequalities and relationships

fi‘ﬁds—_-o (=1,2,...,m)
J on
r

<0, =2 | 0 (i j=1,2:...
o odnry ]

m).




we find
m

m
Ty = Z [roil= “Z Tor s
i=1

i==1
i #j i*j

which indicates the singularity of the matrix (ri,j)' However, after arbi- 177
trarily stipulating one of the constants ¢ and eliminating the corresponding
equation from System (9.4), it is easy to see that the respective matrix R will
satisfy the familiar Adamar condition relative to nonsingularity of the matrices
(the diagonal term in any column is greater in absolute value than the sum of

the absolute values of all the other terms [50]). Since for the Adamar

type matrix R the conditions r,; >0 (i=1, 2,..., m), are also valid, then the

determinant of the matrix is positive (see [50], page 26).

These arguments prove the uniqueness of the solution to Problem (9.1) with
one of the constants ¢, (l<k<m) arbitrarily specified. Let us denote the
elements of the inverse matrix R—1 by (%,;). On the strength of the nonsing-

ularity R l}:; lay ;| =o<eo

From Ostrovskiy's results (see [50], page 42)
it follows that the matrix of System (9.4) will also be nonsingular for such

approximate solutions Ei to Problems (9.3) which satisfy the condition

| ] | 1
nax | €, ; =’max] — (yy—m)ds | = e < — € ———n),
| e | = | [ 5 e -
I
w=max |a;,; | . :
where i . Let us also note that the matrix R depends only on the geo-

metyy of the given region and does not depend on the boundary conditions.

Therefore, for the specific region we can once and forever compute a.

Thus, to obtain an approximate solution to Problem (9.1) we must
specify one of the constants ¢so to approximately solve Problem (9.3) and use
the system obtained from (9.4) by discarding one equation. Here the approximate
solutions of Problems (9.3) must satisfy the following conditions: (1) for

any ¢>0 we can construct an approximate solution which satisfies the condition:
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J
max —— (y,—1,) ds 3
i j f«’n (4 =7) <
Fj
(obviously for this it is sufficient that the normal derivative 7?%’ of the

approximate solution approximate g%' in the sense of the metric Lz); (2)
furthermore, it is desirable that the approximate method for solving Problems
(9.3) be such that, after obtaining the solution to one of the Problems in (9.3},
the solutions to the other problems will be obtained automatically,without
considerable computation. These requirements are satisfied by the method of
solving the boundary value problems described above. Let us analyze the
following linearly independent system of functions [3], complete in Lz at I':

{hlf(ﬁ,bO}, {9.5)

where x, are the elements of the denumberable set of points distributed everywhere
m

densely on the auxiliary contour s==) s, (Figure 3). Below we analyze Problem
=0,
(9.1) for the two-~dimensional case although all the arguments obviously are /78

valid also for the case of three dimensions; here System (9.5) must be replaced

by the system {[Inr(x, y)1™'}, where x; are distributed on a certain surface [6].

Let us consider the system {4 (y));
i
¢ (=)  ApiInr(x, ),
j=1

where A, , are the coefficients of orthonormalization of System (9.53)
E]

Using for u

ol the Green formula at the points X, we find
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J]n r (xiv ) Pty (y) dS”=Fi=
r

0 ‘
- f it () -7 (3, ) ds,,
F on, (9.6)

Figure 3

where

o dum+1 |
Prnt1 (H) = ~ r

After multiplying the first i in Equation (9.6) by Aj i(j =1,2,..., 1) and
3
combining, we find
i
[onri @ o0 @) ds, = @95 4,.,F,
P =1 9.7

where @) are the Fourier coefficients of the unknown function Pmi1(4) .
Assuming that Pm+1(#)€L; and taking into account the completeness of the
system (99(y)} , we will have

N

1 .

lim — E Y O, mt1) )
Nl Pt (!/) i ¢ (y)

=1

=),
L,

Let us note that the approximate values of the right-hand sides of System

{9.4) have been found (even before Problem (9.3) was solved for um+l)’

Let us analyze (m) classes Wi (i=1,2,...,m) of numbers according to
absoclute value (m). We shall assume that the points x, are distributed

such that if k€W, , then x,¢s; .

Let us use the Green formula for u, (i=1,2,..., m) at the points % :
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[ 107 (x, 9) 9 (4) ds, =2 when k€W,
r

fln 7ty Y) 91 (9) ds, =0 whenk€W; (=),
r

where

For the coefficients of the generalized Fourier series of the function

¢;(y) we obtain

r
PP =25 Z Hpcions
i=1

(9.8)

where r is the greatest whole number which satisfies the condition rm+-i<)

Expressions (9.7) and (9.8) make it possible to obtain the right-hand

sides and coefficients of System (9.4), the solutions c, of which (for ome

specified constant), are introduced into the Green formula for solving Problem

(9.1):

u@=_L5 J
» ——2—1‘;1 [w(s) 4 ¢;] : g Inr(x, y) ds,—
=1y,

1
— J- Inr(x, Y) o (y) ds,, x€G,
'
r

where

-

ou I Gad, @ o)
e oD ) i =
¢ () onIr = Z Cijé 1 P, epyr=1,

i=1

give values of the solution to Problem (9.1)

(9.9)

at the arbitrary point <G
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In the two-dimensional case, after computing u(x,y), it is often required
[44}, [48] to also compute the imaginary part v(x,y) of the holomorphic
function g(z) = u + iv. For this we can use the algorithm from Reference [51],
which assumes computation of the values v at the points at the limit by
recurrence relationships (difference analog of the Cauchy Riemann relationships)
and at the interior points by solving the system of difference equatioms.

However,knowledge of the functions U

and ilil makes it possible to compute
r on |

the functions

v(y ! oy ou
Dlp = ot [ ds=at [Gras
0 0
du ou )
on [T~ os sy

and then for computation of v(x) x€G » the Green Formula (9.9) is used.

§10. Approximate Solution to the Reimann-Hilbert Problem

The Riemann-Hilbert problem for a multiply connected region is
the following. In the region Gy (Figure 1), bounded by the contour
F=T+T, -+ -«.+4T,, , we seek the holomorphic function F(s) = u + iv, which

gatisfies at the contour T of the region Gi the condition

a(s) a-+B( v="1 (-
Assuming that ¢(5), (S, Y(9 are continuous H8lder functions with an arc /80
length S on the boundary I and ¢*+f’=1, and F(z) is a continuous holomor-

phic HBlder function in the closed region G(F(z) - HO [471), the solution to
the formulated problem when 71+I1>m | where n is the index of the
analyzed problem [53] (the case n-f-l<m can [47] be reduced to the problem when

n = m), is reduced [47] to solving the following boundary value problems (we



know [53], that when n-+1->m the anslyzed problem is always solvable, and the

respective homogeneous problem has (2n + 1-m) linearly independent solutions.

I. We seek HO ~ the holomorphic function g(z) assuming the following

conditions at the boundary:

Reg (@ |r,=w (),
Reg(@ Ir,=w@® +Cp (k=12 ..., m),

where w(s) is a known function, and C, are arbitrary constants. Here we
shall assume for generality that p(p < m) of them (numeration of the contours
is done in such a manner that they are the first p) are equal to zero. This
problem, as noted above, is also encountered [48] in conformal mapping of
multiply connected regions and in computing [49] the field of charged fila-

ments distributed near conducting cylinders.

IT. We seek the function which is harmonic in Gl assuming the following

boundary values:

w@|, =06 k=0 1., p),

ou ou
(2 4n

on os J T,

=9(5) (k=p+1,..., m),
k

where $( and @(9==i9 are known functions, and y; are nonzero constants.
0s

ITI. We seek the function v which is harmonic in Gi with the following

boundary values:

ou

on

ou ou
LB == (k=p+1,..., m).
(Y/ s ) ?vrh ) - (k=p+ m)

=-—0(S k=01 l,,.., s
r, 9 () ( p)
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The general solution to the Riemann-Hilbert problem with (20 + i—m)
arbitrary coefficients (their number may be equal to zero for the region of
odd connectedness) is constructed [47] from a solution to these boundary value
problems. To obtain some partial solution, it is necessary to have additional

information relative to the unknown function (see [53], Chapter 4, §6).

Let us analyze Problem I. It was analyzed in the previous section and
therefore we shall not touch upon the details of the cited algorithm. We

know [53] that for umiqueness of H, - the holomorphic function, g(z) = u + iv,

0
where

Au=0 in region G;,

ui | =0s),.

1T (10.1)
Yo cw@+6, (=1, 2 ..., m),

rk

it is necessary and sufficient that the constants Gk be selected in such a way

that

j.‘_’i’_ ds=0 (k=1,2,..., m)"
s
Iy

/81

or taking into account the Cauchy-Riemann relationships we find for determination -

of Gk the following conditions:

Pﬁ‘. ds=0 (k=0, 1, ..., m).
on (10.2)
Ty
Equation (10.2) when k = 0 is a simple corollary of the harmonicity
of w and Equation (10.2) when k = 1,2,...,m.

In the preceding section for solving problem (10.1) - (10.2) we
solved m boundary value Problems (9.3). In the present section we give
formulas for solving Problem (10.1) - (10.2), which do not require

preliminary solution to all problems in (9.3).
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For solution to Problem (10.1) - (10.2) the methods developed zbove are

well suited because in the course of solving the problems by these methods

Ju .
the function 5 is computed automatically.

Using the Green formula for solving Problem (10.1), we find (below we will

use the notations in Reference [3])

m
u(x)=~2—l-—.- Z J [0 (5)4-Cyl 7;— Inr(x, y) ds,—.
T k=0 u ny

L f Inr(x, y) ¢ (y)ds,, - x€G;,
2n
r

1 On 9
0= 5 Z:‘(, f [0 (5)+C,l . Inr(x, y) ds,—
=0 ¢,

l .
=5 | e aeds, s,
r
where
ou

mo.
Go=")" G (Fig. 3) ¢ ()= —

k=0

Taking into account the notation

9
Iw(s) . Inr(x, y) ds,=Fx,,

v

and the equation

2x for x&G,

(9
o —— Inr(x, y)ds,= )
[dn ( 4 dsy {o for x€G,—G,,

Pe

, Co-*‘—_—O.

(10.3

(10.4)

{10.5)
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Equation (10.4) takes the form

3’ Inr(x y) ¢ () ds,=F (0)+2rG, x€G,.
r

(10.6)

Let us analyze the system {¢;(y)}[3], obtained by orthonormalization of
the linearly independent and complete 14 system {Inr(x,. )}, where x; are
elements of the denumerable set, distributed everywhere dense on the

auxiliary [3] boundary s = Sy + g + s, +...+sm (Figure 3)

i
9 (y)= Z Aj'i lnr(xj’ )
j=1

where A, 5 are the coefficients of orthonormalization.
Ed

Let us write (10.6) for the points X,

[
Inr(x, ds,=F,+nCl, x,€G,
IJ (x5 y) 9 (y) ds,=F;+ 1 (10.7)

where Fi = F(Xi)’ C(l) = Ck’ if x%€S,. Multiplying the first i in the

equation by Aj. i G =1,2,..., i) and combining them
i i i
fcp(y) 9 (g ds,= ;=Y Ay Fitimy " COA, =B+ 7y CO4,,  (10.8)
P i=l =1 =

where ®; are Fourier coefficients of the unknown function ? (4.

&,= i A, F,.

=1

It is well known that for an arbitrary e there is an NO such that when N3>N,,

for any k<m, the following inequality will be satisfied

(14) Proof of linear independence and completeness of this system is
analogous to that in the case of a singly connected region [3].
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N 2
[[e0— Y om | as,<c @=1,2..m,
f,

i=1

and a fortiori the approximate equation

- N
[ewas=[ Y oqwds, @=12...m.

Therefore, taking into account (10.2) and (10.8) we find the following system
for determining the constants Ck:
N _ N i
Bz S Bifiu=y 26y COApifun (k=12 ...), (10.9)
i =1 i=1 ]:_—.1
where
J"Pi W) ds,=f. -
Ty
Grouping in the right-hand side of the kth equation (k = 1,2,...,m) (10.9)
the terms with identical coefficient CS (s = 1,2,...,m) and denoting their
sum by Ak,s’ we find the system
m .
Bk= Z Ah' scs (kn]v 21 sre sy m)' (1@01@}
s=1

Determining from (10.10) the coefficients Ck (k =1,2,..., m) and sub~
stituting them into (10.8) we find the Fourier coefficients of the unknown
function ¢(y). Instead of 9(4) in (10.3) if we use the corresponding
generalized Fourier series

N
PV @)=Y D9(),

i=]

()

we find the approximate value of u (x) of the unknown solution to problem T
at the arbitrary point x inside the region G. From the convergence of
¢ (@) to 9, in the sense of the metric L,, there directly follows the

uniform convergence of u(N)(x) to u(x).
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Substituting into (10.6) the integral of any quadrature formula and
assigning to the parameter x different values of the auxiliary contour s, we

find the following system:

N N
Z az,;%:Z o Inr (x;, !/I)CP1=F}+2WC(”, (10.11)
i=1 i=1

where C(J) = i’ if .nésh. Let us write (10.11) in vector form

Ap=F+ 2zC. (10.12)

For the analyzed system we can prove the theorems which are analogous to
Theorems 5 - 7 in Reference [4] (in Reference [4] in the formulation of Theorem
7 there is a misprint; instead of the asymptotic inequalities Al j_O(N—l/z), /84
Al f_O(le), My §_O(N_l) and IIL-1|[ RN 3_0(/&), respectively). Thus, for
example, in complete analogy with the arguments cited in [3] we can prove that

for any N there are N values x, of the parameter x such that System (10.12)

k .
will be solvable, and the solution may be found by the method of successive
approximations, beginning from the aribtrary vector ¢(0). In this case the
norm in the sense of the space my of the inverse operator Afl can be made as

near to 1 as desired. From (10.12) we obtain
p=A"1F42r At C. (10.13)

Replacing the integral in (10.2) by the quadrature formula and using (10.13),
we find a system of m equations for determining the coefficients Ck (k =1, 2,
., m)., The values obtained for Ck are substituted into (10.13) and the
vector ¢ is determined, thus making it possible to compute the solution to the
problem from Equation (10.3) by firét replacing the integrals in it with

quadrature sums.
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For computation of the function v, we can use the algorithm from
Reference [51], which assumes computation of the values v in the points at
the limit by recurrence relationships (difference analog of the Cauchy~

Riemann relationships), and in the interior points by solution of the sistem
u u
of difference equations. However, knowledge of the functions r and gggr
|
makes it possible for computation of v to use the Green formula

v

s

1 0 1 v
- ¢ — e fnr@ Yy — ds,,
v e on ,[U(y). on Inr, g) ds, In !nr( Z on "\

where
? ) 'L{ ou !
o) =v,+ | -2 ds=v, - | 2L ds=v,+ l ¢ () dt,
os on .
0 Q Q
ov  du PR
—r == (S).
on  0s )
As far as Problems II and III are concerned, for their solution we
can use the method of finite differences as described in [47](15) or use

the methods in References [1,3]. For the latter case we will give the formulas

without discussing convergence of the respective computational algorithms.

Let us analyze Problem II. From its boundary values we determine

ou | _ o rouN ] L (10.14)
;;!mrﬁ@ n(ds)hm (k=p+1,..., m).

(15) However, we must note that the accuracy of the formulas in Reference
([47] for the points of the contours Iy {(k=l, 2,2, sty in the case of

Problem ITI, and for the points of the boundary I' in the case of Problem

IITI, is by a whole order of magnitude inferior to the formulas in Reference
[54]. Proofs of the convergence of this net-point method for Problems II

and III in [47] are not vigorous, and the final computations are rather rough
(compare with the computations in Reference [55]).
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Using the Green formulas for Problem II and (10.14), we find

p
4= 5 2. r[ b ;f;- Inr (x, g) ds--
i
l lj?l - du
— 5 J Inr(x, y) | P6)—71 s, = ].dsyv—l—
k=p-1 Te

m
- d ‘
= [ $ (8) — Inr(x, y) ds,—
2% kz:‘;;_}_l .rh dﬂy v

1 &
-—_Q—EZO J- ln.r (x, y)CP(S) dsy; .xEGiv
i= T

p m
0= b ——inr (s, ds,— Y jlnr(x,y)['p(s)——

=0 ¢, v h=pH f,
du nm - o
S PO fws) Inr (x, 4) ds, —
0s on
BEPHL E, v

p
— Z flnr(x,'y)g(s)dsy, x€G,,

{==0 i“l
where _-S =2 ..%..J l=0 1
¢ () o Ir, (=0, 1,..., p),
V()=u | (k=p-1,...,m).
9%

Let us analyze the expression

f Inr(x, y) %fﬂds (k=p+-1, ..., m).
S
Ty

(10.15)

(10.16)

Applying to it the formula of integration by parts and taking into account

the periodicity of the function 1n r(x,y) for variable y, we obtain



flnr(x,y) %st.dsy=-— (qj(s) ;s_—lnr(x,y)dsy.

- v
Ty Ty

Taking this latter equation into account, (10.15) and (10.16) take the form

0
ww=F@+ = 3 [ F0[Lmreg-m i y)] ds, —
2w on os,
k= p—{ 13 Ty v
4 —
. Z flnr(x,y)cp(s)ds,,, x€G,, (10.17)
=0t 186
n
0= F (x $) | — Inr(x, y)—
" ()+‘k—z—|—l'f¢()[dnv ¥
=P I'n
p _ (10.18)
—— 9 Inr(x v ] ds, — Z j Inr(x, y) ¢ (s5)ds,, x€G,,
ds, ] =5
where
F(x)= R [q)(s) 0 Inr(x, y) ds, —
=or ), | ¥O 5 e o ds,
i=0 r L4
i
1 m .
— Z J Inr(x, y) 9 (s) ds,
k=p--1 T
is a known function.
From the boundary conditions of Problem III we determine
ou | 1 du £2
—_—] = — ——  (k=p+1,.., m. 10.19
on ,rk Y 95 (I Yr ‘ ( )

Applying the Green formula and (10.19) to solution of Problem III, we obtain
1 :
w= o [ 00 Linr (s, g ds,+
2r on

v

r
TR ;o g (10.20)
+ 5 ) f Inr (s, )9 0) ds,~ 1 3" ”g‘i _
= "Thok=prrp L O

—_ }r(x. yds, x€G;,
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1 f
0= — [ ,p(s) ——Inr(x, v dsy+ — Jlnr(x Yoyds, —
2r L ony 0 Th
. }Ii [ [ﬁf.-—:p(y)]r(x y) ds xE‘G (10.21)
2ry, k1 v, 0s ’ v e
where
bis)=u |

ir.
Using the formula of integration by parts, Expressions (10.20) and (10.21)

assume the following form

u(x)...___ f qa(s) _ lnr(x, y)ds, + jlnr(x Y 9 (y)ds,+

443

t ,
SR J “"-‘”[sn‘;“""" =y iy e o (0.22) /81
T

p d 1
0=-§%~ Z J b (©) e Inr(x, !/)ds,,+~2»~; r( Inr(x, y)o ) ds,+

k.=0 s v

1 m
L A —
+ 5 k;&l .(w)[ e 9

T (10.23)

L Inr(x, y) ]dsy, xCG.
Te 95y

Formulas (10.17) -(10.18) and (10.22) - (10.23) make it possible to use

the methods described above for solving Problems II and III.

Let us indicate still one other method for solving the modified Dirichlet

problem.

Let {9;(®) [x(x, %J)] be an orthonormalized system of functions harmonic in

G_is Furthermore, we shall assume that the system {¢,(x)| is complete on I' in
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the sense of the metric L,(I), i.e., for any function vY(y) €L, ([) (v€T)

and for any €¢>0, we find N of the coefficients bi isuch that the following

inequality will be satisfied

{[. [‘r(y)_i b %: (4) ]'2 ds, }'/’ﬂ_

r i=1

Let us look at the boﬁndary value problem (Figure 1)

Au=0 in G;
uy
=7
With the aid of the Schwarz inequality (and in the case of completeness in the
sense of the metric C using the principle of the maximum) it is easy to show
that in any interior point of the region Gi and uniformly in any region

completely lying in the open region Gi’ the difference

N

“6) =) bw @ |
=1

can be made as small as desired. This method for solving the boundary value

problems (the Piconet method [6]) may be quite effective with proper selection
of the system{¢(®)}).

Let us look at the following problems:

Auy=0 in G,

/88

Uo i = (S),
10.23.0
Au[=0 in ‘G‘, ( ‘—U
u. .
: =0  k=(l, 2,..., m),
u;
r=1.
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Let the approximate solutions to these problems be represented in the

form of the following series:

N;
W= Ae=n  (=0,1,2.., m)
= |

Let us introduce the following notations

} 0ﬂi ds-—*elni (l=0, l, .2’ ceey MG k=1’ e m)
J on
Ty

To determine the coefficients Ci(i =1,...,m) of Problem (10.1) ~ (10a2), we
obtain the following system:

m

Zciek”.—_—ek,o, k=1,2,..., m. (10.32)

=]

Determining ¢, from this latter system, the approximate solution u to Problem

(10.1) -~ (10.2) takes the following form:

=

where ¢y = 0.

Usually [6] in the case of a singly connected region, as such a system
we take the system {p;(x)} of harmonic polynomials; we know that they are
complete in L,{) , where T is a contour bounding a singly connected region
{(if this region has a stable solution of the Dirichlet problem with respect
to deformation of the region, then the system of harmonic polynomials is

complete on T in the sense of the metric C).

118



It is clear then in the case of a multiply comnected region the system
{P;(x)} can be complete neither in the sense of the metric C nor in the sense of
the metric L2.

For any continuous function Y (¥) let

N
Y (9)— Z'bépi ®) ! <e  (y€n).

max
yer i=1

From the principle of the maximum it directly follows that if for the function

Y the following inequality is satisfied

max |y (y) | > max |7 ()|,
yEer

0

then such a function cannot be approximated sufficiently well by harmonic
polynomials. However, this latter inequality may not be satisfied for the

function y(y) either, and cannot be approximated by harmonic polynomals.

In fact let us take two functions ¥;(y) and Yz () for which the following /89
equations are satisfied:
71 (®)=Y(¥) on [, (Figure 1)

max |y, 6)—7a @) | =1. (10.24)
yel—r,

On the strength of our assumption for any ¢>0 we find coefficients

b(i‘) and b(%) such that
i
‘L]!i 0p, (1) | < ~ |y ‘E b p (y)) <=
max — ) 1/ < —, INnax e N
yer T1 Z 1 Y, 7 ror l 2 L ' l 1
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From the principle of the maximum and the first of the equations in (10.24),

we find that at any point of the region G bounded by the contour I, the foll-

owing inequality is wvalid

] fj bﬁ"pz(y)—*i 52, (4) [<-§-,

d=] i=1

and therefore,

Ny,
Y1 (9) — Z b p, (y) +

i=1

max
yer—-r,

[

71 () — 12 (4) j < max
y§F-l‘
N,

7*‘ Z,bsz)l’i (.‘/)—Tz(y)} -+ —;—<e,

i=1
which .contradicts the second equation in (10.24).

The system {p;(xr)} may not be complete in the sense of LZ(F) either. Let
us look at the problem
Au=0 on G,

ro =T (y)9

and the function 7 (y), which satisfies the conditions

‘.Y (y):‘”\'l (y) Ha‘ ro:
v()=u(®+C, wa T, (k=1.., m),

where u{y)=u (x*) - and at least one of the constants Ck is not zero.
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From the respresentation of the solution to the Dirichlet problem for
the region G with the aid -of the Green function and from the Schwarz
inequality,it becomes clear that it is impossible to approximate the function

Y (y) sufficiently well in the sense of the metric L, by harmonic polynomials.

2
From these arguments it follows that the functions from the complete (either in
the sense of the metric L:(I), or the sense of the metric C{@)) system can-

not all be harmonic simultaneously at all points of the region G'.

As far as the author knows, the only system of harmonic functions complete /90

in the sense of the metric LZ(I‘) is given in Reference [3].
{Inr(x, %)), (10.25)

where the points x, are distributed everywhere densely on s = o + sy +oee.

S (Figure 3).

We must also mention that this system greatly facilitates computation of
the coefficients ek,i (k = 1,22 ..., m; i.-=20,1,..., m) of the system from

which ¢y (i=1,2,..., m) are determined.

In fact it is easy to see that

N,

e (=2 Z riA; g,
=l

where
N;
= Z A, Inr(x, x), rp=

{l,' xiEGh
O, .‘(ieGe—Gh.

Analogously the computations of the coefficients are simplified if

instead of System (10.25) we analyze the corre'spondibng orthonormalized system.
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In conclusion let us prove the solvability of System (10.10) and (10.32).
It is easy to see that Zk s and Bk (k,s =1, 2, ..., m) in (10.10), when
bl

N - « approach the expressions

ous ds, - f 9y ds,”
on ' '
Fp Ty

respectively, where u, are determined in (10.231).

The coefficients e, . and e in (10.3,) approach these same expressions
k,i k,0 2

under the condition

lim

N o on

)
. (u;—m) !l =0 (=0, I,..., m),
1 {Ly

so that the limiting form of Systems (10.10) and (10.232) coincides. There~
fore, further discussions on the solvability of these systems are completely
analogous to those given on pages 98 and 100. We shall omit these and refer

the reader to those pages.

§11. Solution to the External Dirichlet Problem for the Laplace

Equation Using the Method of Functional Equations.

The program is intended for obtaining a harmonic function outside the

ellipse

5 y,=cosa, Yy=bsinz

under the boundary condition ¥ S=J(yL yEs.

The program consists of four parts:

120



1. An operational program for transferring from the third and fourth
parts from the main memory to the drum, and also for transferring the initial
data to the main memory and for transferring the third and fourth parts from

the drum to the main memory.

II. A program which converts the array of coordinate points cutside the
ellipse from the decimal notation system into a binary one and transfers them

to the drum.

ITII. A program which computes the axes of the auxiliary boundary 81 @8
well as the coordinates of the points on this boundary and prints out these
coordinates. It also computes the scalar products (mk, wi), and the coeffi~
cients of orthonormalization Ak,i; it computes the orthonormalized functions

and verifies the orthonormalization.
IV. A program for computing the values of the harmonic function at given
points outside the ellipse. The program prints out the coordinates of these

points and the solutions corresponding to them.

Computational Procedure

The computational process consists of the following stages:

1. Computation of the coordinates of the auxiliary points and scalar
products.

2. Computation of the coefficients of orthonormalization.

3. Computation of the orthonormalized functions and proof of orthonor-
malization.

4, Computation of the Fourier coefficients and the normal derivative
of the unknown function. |

5. Computation of the values for solution to the problem.
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1. Computation of the Coordinates of the Auxiliary Points and Scalar

Products.

The auxiliary points are taken on the confocal ellipse with semiaxes
b -
ﬁ:=7; andb=b—(p—b) , where (b-b) is given in the initial data (cell 0622).

The coordinates of the auxiliary points are computed from the formula

xP=acosa,, xP=bsina, (k=I, 2,..., 24). (1.1)
&, (k=1,2,...,24) assume the values given in Table 7.
The scalar products
2w

(0p ©)= ( oy, (@) o (“) d“ v o (1.2)
0

where

w, (%) = —;— In [(cos & —x{)24 (6 sin o~ xgk))z]

are computed by Simpson's method.
2. Computation of the Coefficients of Orthonormalization.

The coefficients of orthonormalization Ak 4 are computed from the
]

following formulas:

1

(k=1,2,..., 24), 2.1)
f1gnli

Akah=

Apnei=Aon 3 Gneg Ao (=23, ., 245 i=1,2, .., 23), 2.2)
=i
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where

g ll=
k1 2% —2 k—j—1 2 -
= Z B;, k—-—i’g wz—id“+2ZBh: hej Bm i S Wy ;0 da, By,=1, (2.3)
=0 0 =0 i=1 0
I
%, H=~L Awcpr ‘ w0, da (k=2,3,..., 24; j=k—1,k—2, ..., 1), (2.4)
i=1 b
h—7j
Y‘N

Bh9j= a

po hmj Anmis o (B=2,3, ..., 24 je=k—1, k=2, ..., D).

-~
o

{(2.5)

3. Computation of the Orthonormalized Functions and Checking of Ortho-

normalization.

The value of the orthonormalized functions is computed at the points

& =(j—1) _1_72‘? by the formula

k
‘Ph(“i)=z Aoy (), (R=1,2,..., 24; j=1,2,..., 250). (3.1)

=1

The correctness of the orthonormalization is checked by the formmla

250
(o %) =1— '1_2'E5— Z ®n (&) : (%)) <107 when k=1,
=1
250
™ R | . P
(o 9) =" }: 4 (@) 9; () <10 when k=i,
j=1

Computation of the Fourier Coefficients and the Normal Derivative of /93

the Unknown Function.
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The Fourier coefficients of the unknown function 9 (4) are computed by the

formula
i
Y= AuiFy (=12 .., 29)
k=1
where
2%
b—(b cos & x{+sin & x*)
F,= o de, (k=1,2,..., 24) (4.2
* é’f()@%a—ﬂml+wﬁna—xWF ( ) (42)

ﬁksi are the coefficients of orthonormalization.

The normal derivative of the unknown functiom is computéd at the
T

195 by the formula

points o= (j—1)

24
?(a)= Z“"“"’(“” (i=1, 2,..., 250)

=1

5. Computation of the Values for Solution to the Problem.

The value for the solution to the problem at points outside the

ellipse is sought with the formula

250
1

u( ﬂ)="§'56‘ { _‘f(“j)

b—(bcos a;-E+sin oy -v)

(cos &;—E)? + (bsina;—7?%) +

=

42 1n [(cosa,—~&)=+(bsm aj—n)z]cp(ai)}, #=(~1) = GEBs B.D)

124

4.1

(4.2)

(4.3)

(5.1



© M M 90 w P

L -

© ~N O W N e

FLOW DIAGRAM

Overall Flow Diagram

Operating program.

Standard subprogram block.

Computation of coordinates of points outside ellipse.

Computation of coordinates of auxiliary points and scalar products.

Computation of coefficients of orthonormalization.

Computation of orthonormalized functions and proof of orthonormalization.

Computation of Fourier coefficients and the normal derivative of the
unknown function.

Computation of the value for solution to the problem.

Block A

Read in fundamental program.

Transfer third and fourth parts of program to drum.

Read in input card for initial data.

Read in initial data.

Refer to B 1.

Refer to C.

Transfer third part of program to main memory from drum and access D.

Transfer fourth part of program to main memory from drum and access G.
Block B
Block transfer array "10 - 2",

Compute sin x and cos x.

Compute log-x.
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Block transfer "2 - 10".

Compute specified integral by Simpson's method with automatic calling
sequence (Authors L. S. Tsyganova, I. L. Klimkina).

Square root extractiom.
Block C

Transfer initial data to standard cells.

Transfer programs for computing boundary function f(a) onto drum frem
main memory.

Check the number of coordinates in the memory of the machine at the same
time.

Check how many points are given outside ellipse.

Set up shaping constants.

Shape commands for input of numerical data from reader to main memory.
Read in numerical data.

Shape commands for block transfer "10 - 2".

Refer to B 1.

Shape commands for transfer to drum.

Transfer numerical data to drum.

Check if all numerical data have been fed into machine; if yes go to
A 7, if no go to C 13.

Readdress shaping constants and go to C 6.
Block D

Compute a and b. 95
Clear counter for k.

Compute coordinates of auxiliary points from Formula (1.1).

Refer to B 4.

(k)
1

Print out x and x

(k)
9
Readdress variable commands.

Check if coordinates of all auxiliary points have been computed; if yes
go to D 8, if no go to D 3.

Set up variable commands for computation from Formula (1.2).
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10
11
12

O 00 ~N o Ut

E 11
E 12
E 13

t4 o = ==

=

14
15
16
17
18

19
20

E 21
E 22

Refer to B 5.
Transfer (wk, wi) to storage.
Readdress variable commands.

Check if all (wk, wi) have been computed; if yes go to E; if mo go to D 9.
Block E

Transfer (wlwl) to cell 0001.

Refer to B 6.
1

1.1 - ‘/(u)lml) °
Transfer constants (00 0002 0000 0000) into counter for k.

Compute A

Retrieve variable commands and set up constants for shaping.
Clear counter for j.

Shape commands for computing products Ak—j,i (wkmi).
Compute products Ak—j,i (wkwi).

Compute Formula (2.4).

Check if all terms in Formula (2.4) have been computed; if yes go te E 11;
if no go to E 14.

Transfer values q . to storage.
k, k—J

Readdress variable commands and constants.

Check if all o
E 5.

Kk, k-j have been computed; if yes go to E 15; if no go to
b

Set up shaper constants for computing the next term and go to E 7.
Set up constants for shaping.
Clear counter for j.

Shape commands for computing the product o

Compute product ak,k—iAk—i,j'

K, k-ik-1,5°

Compute Formula (2.5).

Check if all terms B, . have been computed; if yes go to E 21; if no go
K, J
to E 24. ?
Transfer values Bk § to storage.
b4
Readdress variable commands and comnstants.
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23

E 24
E 25
E 26

27

E 28

b

29

30
31

32

E 33
E 34

s < B < B v s B ¢ B €5}
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35
36
37
38
39
40

Check if all Bk p have been computed; if yes go to E 25, is no go to
E 17. !

Set up shaping constants for computing the next term and go to E 17. 96
Set up comstants for shaping.

Shape commands for computing the formula

k—1 : 2n ' )
z B 1y 5' wl_, da. (8
j=0 0
2n
Compute product Bf ,; ( wi_,d&.
'0 .

Compute Formula (6).

Check if all terms in Formula (6) have been computed; if yes go to E 31;
if no go to E 30.

Readdress variable commands for computing next term and go to E 27.

Shape commands for computing the formula

k—2 k—j—1 . 2=z )
22 Bury ) B ,( 0y 0; dac. 7
=0 =1 s '
- 215,
Compute product B, k=] B,,, Y 0 w,; da.

Compute Formula (7).

Check if all terms in Formula (7) have been computed; if yes go to E 36;
if no go to E 35.

Readdress variable commands for computing next term and go to E 32.
Compute radicand.

Refer to B 6.

Shape commands for computing Formula (2.1).

Compute Formula (2.1).

Set up constants for shaping.
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41
42
43
44

45

46

O 00 N O n

11
12
13
14
15
16

Shape commands for computing Formula (2.2).
Transfer constants (00 0001 0000 0000) to i-counter.
Compute nondiagonal coefficient of given row using Formula (2.2).

Check if all nondiagonal coefficients of given row have been computed; if
yes go to E 46; if no go to E 45.

Readdress commands for computing next nondiagonal coefficient and go to
E 43.

Check if all coefficients Ak i have been computed; if yes go to F; if not
go to E 5. ?

Block F /97

Retrieve variable commands.
Clear counter for k.
Compute Formula (3.1).

Check if Px have been computed for all values o,; if yes go to F 5, if o
no go to F 3. J

Transfer computed ¢k(aj) to drum.

Readdress variable commands.

Check if all Py have been computed; if yes go to F 8; if no go to F 3.
Retrieve variable commands and set up constants.

Copy values ¢k(aj) from drum.

Compute the formula ‘ .

250

%
€= o5 Z ?r (%)) 9; (%))-
j=1

Check k = i; if yes go to F 17; if no go to F 12,

Check Condition (3.3); if it is satisfied go to B 21; if not go to F 13.
Transfer value C to cell 0001.

Refer to B 4.

Print out C.

Refer to F 21.
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19
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11
12

13
14
15
16
17
18
19

21

Check Condition (3.2); if satisfied go to B 21; if not go to F 18.
Transfer value 1 - C to cell 000Il.

Refer to B 4.

Print out 1 - C.

Readdress variable commands and constants.

Check if Conditions (3.2) and (3.3) have been verified for all P15 if
ves go to A 8, if no go to F 9.

Block G

Transfer programs for computing boundary function f(a) from drum to main
Memory.

Clear counter for k.

¢9)

Transfer coordinates of auxiliary points X, gk)

and x to working cells.
Refer to B 5.

Readdress variable commands.

Check if all Fk have been computed; if yes go to G 7; if no go to G 3.

Set up variable commands and shaping constants.

Clear counter for i.

Shape commands for computing product Ak iFk' 98

3
Compute product Ak,iFk'

Compute Formula (4.1).

Check if all terms of Formula (4.1) have been computed; if yes go to
G 13; if no go to G 10. '

Transfer values @i to storage.

Readdress variable commands and constants.

Check 1f all @i have been computed; if yes go to G 16; if no go to G 9.
Retrieve variable commands and set up constants for shaping.

Clear counter for i.

Transfer value ¢i(uj) from drum to main memory.

Shape commands for computing Formula (4.3).

Compute Formula (4.3).

Readdress variable commands.



G 22 Check if values of normal derivative of unknown function ¢(a) for =211

aj have been computed; if yes go to G 23; if no go to G 18.
G 23 Check if necessary to print out; if yes go to G 24; if no go to H.
G 24 Refer to B 4.
G 25 Print out ~¢(aj).

Block H

Set up shaping constants

Transfer coordinates of points outside ellipse from drum to main memo
Retrieve variable commands and constants.

Compute Formula (5.1).

Refer .to B 4.

Print out £, n and u(&, n).

Readdress variable commands.

ja-J <= S « B = S S v B« s = «
® N U B WL N

ed; if yes go to H 9; if no go to H 4.

Y.

Check if computation of Formula (5.1) for all transferred points is finish-

H 9 Check if all points are transferred from drum; if yes to go to H 11, if nc
go to H 10.
H 10 Readdress shaping constants and go to H 2.

H 11 Stop.

INSTRUCTION

1. Set Up of Initial Data

The initial data for the program consist of two parts:

1. Initial data in which programs are included for computing the

boundary function and certain initial data.

The program for computing the boundary function f(a) must begin with

cell 0626. The argument o is taken from cell 0001, and the result must be
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transferred to cell 0001. 1In the operation of the program for the boundary
function in cells 0017 and 0020, we will find cos o and b sin o, respectively.
They may be used for computing the boundary function. 1In certain instances
this greatly reduces the commands in the program for computing the boundary

function.

The program for computing the boundary function certainly must end with
the command 34 - - 0555, i.e., after its operation it must transfer control
to cell 0555. 1In setting up the program for computing the boundary function,
as the working cells we can use 0013-0016, 0021-0033 and 0616-0625.

The following initial data are transferred to cells 0622-0625:
@622—(b—€) is the difference between the minor semiaxes of the funda—-

mental S and the auxiliary S, ellipses in the decimal notation

1
system.

0623~b is the minor semiaxis of the basic ellipse, in the decimal
notation system.

0623~ is the length of the program for computing the boundary functiom
f(a) in the third address in the octal notation system. N <600q.

0625 is the cell with conditional data. Depending on which of the
two numbers 0000, 0010 is found in the first address, the program
will transfer the following numbers: 0010 - 250 values are printed
out for the normal derivative of the unknown function at the points
mf=(f~l)—li— 0000 - no values are printed out for the normal

125 °
derivative of the unknown function.

In the second address N1 is registered - the number of points
at which we are required to find a solution in the octal system

of notation Ny <3777,, and in the third address - 0000.

2. Numerical data (coordinates (gi, ni) of the points outside the

132



ellipse) must follow directly after the program for computing the boundary
function. Thus, in cell 0626 + N we must find the abscissa El of point

Ql. In cell 0627 + N — the ordinate ny of this point. In the cell 0630 + N —
the abscissa £2 of point Q2, etc.

For input of the initial data we must make the following "input card":

30 0100 — n—1
31 0622 0010
77 0060
0622 0002 0622
34 ' 0134

where n is the length of the initial data.

2. _Operation of Console /100

The entire punchcard deck is assembled in the following order:

. Operation code.

. Blank card.

Initial data input card.
Blank card.

. Initial data.

Blank card.

°

~N oy W N

Numerical data.




TABLE OF CONTROL STOPS

Stop Contents of Reason for stop Action
instruction
storage

Co04 330008 — — Incorrect program Repeat read in.

input.
C0i3 33— G001 —
0022 33— 0002 —
0032 33 — 0003 _ Incorrect drum With key start repeat
0037 33 — 0004 _ access. access to drum.
0151 33 - 0005 —
0218 33 - 0006 —
1036 33 — 0007 —
1056 33 — 0010 —
1064 33 — 0011 —_
0344 33 — 0012 —
0416 33 — 0013 —
0464 33 — 9014 — Incorrect conversion of hlear problem and enter
0073, 33 — 0002 _ numbers from decimal to | again.

binary system.
0153 33 — 0013 - Argument for which logar- |

' ithm is sought is negative.
0365 33 — 0010 _ Radicand negative. Carry out command 34 - -
0570 from console.

1104 33 — — 0001 Product (¢k’ q"’i) when k # Continue computation with

i is greater than 10 . key start.
1114 33— — 0002

Difference l—(cpk ¢i) when Continue computation with
0533 330002 — - k = i greater tﬁan 10_4. key start.

End of computation.

must be cleared and the machine chécked.

decreased.

If the stops given above are repeated several times, then the problem

It may happen that with the machine in good working order there occurs

the stop 0365 (33 - 0010 -). In this case the difference (b-b) must be



If the machine is in good working order and if the stops 1104 (33 — /101
0001) and 1114 (33 - - 0002) are repeated several times, then it is necessary

to decrease the difference (b - E}.

Interpretation of the Final Results of
Machine Print Out

The program prints out the coordinates of the auxiliary points in the

sequence:

1, xf; x®, k@ LB KDL, ke gl

In checking the orthonormalization it may happen that Conditions (3.2)
and (3.3) are not satisfied. If Condition (3.2) is not satisfied, then the
machine prints out the value of the difference 1~ (¢,,¢) and the conditional
digit (00 000 001) and if Condition (3.3) is not satisfied then only the

value (9,,9,) is printed.

If it is required to print out the values of the normal unknown func-
tion ¢{=z), , then the program prints out 250 values at the points

&, = (j—1) T (i =1, 2, ..., 250) in the sequence:
@), P (9‘2), ey @ (@)
The program prints out the coordinates of the points at which solution

to the boundary wvalue problem and the solutions corresponding to it are

found

El’ 7]1’ u(El) ﬂl); &m 7]27 u(Em 7]2); srey EN!' nNn u(&Nn ‘ﬂl‘h)-

Numerical Examples

Numerical Example 1. Let us look at the solution to the Dirichlet
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fousk

problem for the ellipse

S: y,=cosa, y,=0,80sing,

under the boundary condition

-5
f () e

ol yEES.

The auxiliary points x® €B; were taken on the confocal ellipse

S;: M =0,75cos o, x=0,60sine, (k=1, 2,..., 24).

Such values for the semiaxes of the auxiliary ellipse of the program
are selected in the case when as the initial data in the cell 0622 we find the

number 0.20.

The coordinates of the auxiliary points
IR R T .

on the ellipse Sl are given in Table 8,

In this case, it was found that the orthonormalization was checked with /102
, -4 . 1
an accuracy exceeding 10 ', i.e., the diagonal terms within an accuracy
of iﬁwg were equal to unity and the nondiagonal terms within this same

accuracy were equal to zero.

Since as the initial data we were not required to print out the values
for the normal derivative of the unknown function ¢(«;) (in the first

address of cell 0625 we have 0000), the program does not print them out.

A precise solution to this problem has the form

£

hreraene-all | » EBav
e ()

U m=



and, consequently, it was possible to compare the approximate solution with

the exact solution and compute the error e.
Table 9 gives the coordinates of the points outside the ellipse, the
approximate solutions to them and the deviation of the approximate solutiom

from the exact one.

Numerical Example 2. As another numerical example, let us look at the

solution to the Dirichlet problem for the ellipse,
S : y,=cosa, y,=0,50singe,

under the boundary condition

f(y)=—-@§%, yE MES.

The auxiliary points x® €B, were taken on the conformal ellipse
S, : x{?=0,80cos&,, x¥=0,50sina, (k=1, 2,...,24).
The coordinates of the auxiliary points are given in Table 10.

In this case, the orthonormalization was also carried out with an

accuracy exceeding 10‘4.

The exact solution to this problem has the form

28y
uGM=—=—""—"_, ( 7€ B,
(] Ex R € )

Table 11 gives the coordinates of the points outside the ellipse,
the approximate solutions corresponding to them and the deviation of the

approximate solution from the exact one.
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The distribution of points outside the ellipse, at which the values are
computed for solution to the boundary value problem, for the first numerical

example is given on Figure 4, and for the second example - on Figure 5.

TABLE 7
k %, k %y k o,
{ 9N’ 9 330° 17 75
2 279° 10 150° 18 255
3 0° 1 120 19 105"
4 189° 12 300° 20 285°
5 225° 13 60° 21 i5°
& 45° 14 240° 22 195°
7 315° 15 30° 23 165°
8 135° 16 210° 24 H5° -
TABLE 8
k x{9 X k xo x
{ —0.10971885-10-1 .0,6000000 13 0,37499999 0,51951524
2 0,32915659-10 | —€,66000000 14 | —0,37499997 —0,51961525
3 0.75000100 | 0.00000000 15 0.61951905 0,30000000
4 | —0,75000009 —0,17555016-10-1 16 | —0,64951904 —0,30000001
5§ —0.53033006 —0.42426408 17 0,19411427 0.,57955549
6 0,53033008 0.,42426407 18| —0,19411425 ~—0,57955550
7 { " 0,53033011 —0.42426404 19 —0,19411429 0,57955549
8 | —0.53033009 0.42426406 20 0,19411431 . —0,57955549
9 0,64951907 —0,29999997 21 ,72444437 0,15529142
19 | —0,64951906 0.29999997 22 | —0,72444436 ~+0,15529144
11 | —0,37500001 0.51961523 23 | —0,72444437 0,15629141
12 0.37500003 —0.,51961522 24 0,72444438 —0,15529139
TABLE 9
Ny 3 NN, uEvi NNy €
1 0,80 1,00 0,48780488 —0,1-10-7
2 0,80 1,29 0,38461536 0.,2-10-7
3 0.80 1,40 0,30769227 0,3-10-7
4 0,80 1,60 0,24999996 0,4-10-7
5 0,80 1,80 0,20618553 0,310 7
6 0,80 2,00 0,17241376 0,3-107
7 0.80 92,40 0,12499997 0.3-19-
8 0,90 2,60 0,108108C8 0,2-10~7
9 0,90 1,10 0.44554454 0,1-10-7



TABLE 9 (con't)

10 0,90 1560 0,26706228 0.3-10.7

1t 0,90 2410 0,17241376 0,3-10-7

12 0,90 2,60 0.11889033 0.2-10-7

13 0,90 3410 0,86372339-10-1 0,2-10-7

14 0,90 13,60 0.65359456 - 10-1 0.2 10-7

15 0,90 4 460 0,409€4933- 10—t 0.2-107

16 0,90 560 0.927976357 - 10-1 0.2-10-7

17 1,20 1,20 041666664 0.2.10-

1S 1,20 2400 022058820 0.3-10-7

19 1220 2480 £012931032 0.2.10-7

20 1,20 3460 0,53333312- 101 0,2-10-7

21 1,20 4,440 0.57692288 - 10~ 0.2-10-7

22 1,20 5420 0,42134813-10-1 0,2-10-7

23 1,20 6,00 0,32051264-10-1 0,2-10-7

24 1,20 6480 6,25167768- 191 0,2-10-7

25 2,00 1,30 0,35149381 0.3-10-7

26 2407 2437 0,21528622 0.3-10-1

27 2,00 3,30 0.13431831 0.2-10-1

28 2,00 4430 0,88928392-10-1 0,2-10-7

29 2,00 5,30 0,62324693. 10— 0,2.10-7

30 2400 6430 0,45777047.101 0,2-10-7

31 2,00 7 430 0.34910089 - 101 0.2.10-1

32 2,00 8,30 0,27438588-10-1 0,2.10-7

33 54,00 1,40 0,1£545992 0,2-10-7

34 5400 2550 0. 15999995 0.2-10-"

35 5400 3,60 0.13171757 0,2-10-1

36 5,00 4,70 0,10617963 0.2-10-1

37 5400 5,80 0,85266012. 101 0,2-10-7

38 5,00 6,90 0,68861020-10~1 0.2-10°7

39 5400 8,00 0,56179757.10~1 G,2:10-7

40 5,00 9,10 0,46377870.10~1 0,2-10-*

TABLE 10
k| YOI X k 0 e

I | —0,11703344.10-7% . 0,40000000 13 0,39999999 0,31641016
2 0,35110033-10-7 —0,40000000 14 | —0,39999997 —0,34641017
3 0,80000000 0,00000000 15 0,69282032 0,200000000
4 1 —0,8000C0000 —0,11703344-10-% 16 | —0,69282031 ~0,20000001
5 | —0,56568540 —0,28284272 17 0,20705522 0,38637033
6. 0,56508542 0,28284271 181 —0,20705520 —0,38637033
7 0,56568545 —0,28284269 19 | —0,20705524 0,38637032
8 | —0,56568543 0,28284270 20 0,20705527 —0,38637032
9 0,69282034 —0,19999998 21 0,77274066 0,10352761
10 | —0,69282033 0,19999999 22 | —0,77274065 —0,10352761
1T | —0,40000001 6,34641015 23 | —0,77274066 0,10352760
12 €,40000003 —0,34641015 24 0,77274067 ~0,10352760

1
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TABLE 11

Nl EN. N l u (gNn nNt) ’ 2
1 0,10 0,85 —0,31638123 : 0.4-10-3
2 0,10 0,90 —0,26741077 0,3 10-3
3 0,10 0,95 ~0,22799725 0,2-10-3
4 0,10 1,00 —0,19593167 ¢ 1.10-3
3 0,10 1,05 —0,16958642 0,9-10-4
6 0,10 1,10 014774571 0,6-10—+
7 0,40 1,20 ~-(,37494110 0,2-10-32
8 0,40 1,40 —0,24916701 0,3-10-%
9 0,40 1,60 —C,17299237 0,2-10-5
10 0,40 1,80 —0,12455676 0,1-10-4
11 0,40 2,00 —0,92448923. 101 0,7-40-%
12 0,40 2,20 —0,70395625-10-1 0.4-10-%
13 0,50 0,85 —0,89872762 0,2-10~*
14 0,50 2,50 —0,59168693.10 0,3-10-%
15 0,50 3,00 —0,35060798- 101 0,1-10-3
16 0,50 3.50 —0,22399381-10-1 0,6-10-8
17 0,50 4,00 —0,15147633- 101 0,3-10-¢
i8 0,50 4,50 —0,10707785-10~¢ 0,1-10-8
19 0,70 0,80 —0 87710776 G,2-10~
20 0,70 0,90 ~—0,74554028 0,2-10-%
21 0,70 1,50 —0,27969678 02104
22 0,70 1,70 —0,2n831214 0,1.10-%
23 0,70 1,90 —0,15822948 0,1-10-*
24 0,70 2,10 —0,12244221 0,7-10-%
25 1,00 0,80 —0,59486192 0,2.10-3
26 1,00 1,10 —0,45043029 0,1-10-¢
27 1,00 1,30 —0,35929693 0,1.10-4
28 1,00 2,30 —0,11626231 0,5-10-%
29 1,00 2 .40 —0,10503420 0,4-10-3
30 1,00 2,50 —0,86350308-10~1 0,3-10—%
31 1,50 0,80 —0,28736243 0,1.10—%
32 1,50 3,00 —0,71109321-10~% 0,2-10-5
33 1,50 3,70 —0,43685470- 102 0,9-10-8
34 1,50 4,40 —0,28265522 - 10~1 0,5-10-8
35 1,50 5,10 —0,19157636.10~1 0,2 10-7
36 1,50 5,80 —0,13508267.10~1 0,8 10-7
37 2,00 0,80 —0,14863768 —0,5-10~8
38 2,00 0,90 —0,15560525 —0,4-10—%
39 2,00 1,00 —0, 16000339 —0,3-106—3
40 2,00 2,00 —0,12499848 0,2.10-%
41 2,00 3,00 ~0,71004589-10-1 0,1-10-3
42 2,00 4,00 —0,39999326-10~1 0,7-10-¢
43 2,00 5,00 —0,23780922.10-7 0,3-10-¢

/105

INITIAL DATA FOR FIRST NUMERICAL EXAMPLE
Address Command Comments
0000 30 | 0100 0010 Initial data input card.
1 31 0622 | 0007
2 7 0060
3 0622 | 0002 | 0622
4 34 0134
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INITIAL DATA

Address Command Comments

0622 0 -+ | 2000 (b-b) is the difference bet. semiaxes 5 and 87.
g + 0 | + | 8000 o005 Semi-minor axis of basic ellipse S.
4 + 0000 | 0050 | onog N is the length of prog. for comput. boundary func.
5 Values of normal derivative of unknown func. Ny =
6 03 | 0017 | 0017 | 0001 _>0(8) . - .
7 03 | 0020 | 0020 | o002 Beg. of prog. for computing boundary function.
0630 01 0001 | 0002 | 0901
1 04 0017 | 0001 | 0001
2 34 0555 End of program for computing boundary function.
NUMERICAL INFORMATION
Address Numbers Address Numbers
0633 -+ 0 -4 8000 0670 -+ I b 4600
4 + 1 | -+ | 1000 1 4+ | o | -~ | 9000
5 ~ 0 -+ &000 2 -+ 1 -+ 5600
6 -+ 1 -+ 1200 3 -} 1 -} 1200
7 -+ 0 -} 8000 4 -+ 1 -+ 1200
0640 + 1 + | 1400 5 + 1 4+ | 1200
1 4+ | o | + |8m0 6 + 1 4+ | 2000
2 L 1 -+ | 1600 7 + 1 - | 1200
3 -+ 0 -+ | 8000 0700 4 1 + 2800
4 + 1| + | 1800 i + 1| | 1200
5 4+ | o | + |8co0 2 40 + | 3600
6 -+ 1 + 12000 3 + 1 o+ 1900
7 -+ 0 4+ 18000 4 + 1 14400
0650 + 1 + | 2400 5 + 1 -4} 1200
1 -+ 0 - | 8000 6 -+ 1 -+ 5200
2 4+ | 1 + | 2500 7 4+ + | 1200
3 - 0 -+ | 9000 0710 + 1 4 | 6000
4 4+ | 1 | 4+ |1100 1 4+ 1 | - 1200
5 + 0 -+ {9000 2 —+- 1 - 6800
6 -+ 1 -+ | 1600 3 -+ 1 2000
7 + | 0 | + |9000 4 + |1 j; 1306
0660 -+ 1 -+ 2100 5 - 1 = 2000
1 + | 0 | 4+ | 9000 6 4+ |1 | -] 2300
2 4 | 1 | 4+ | 2600 7 4+ | 1 | 4+ | 2000
3 4 0 +. 19000 0720 + i ] 3300
4 + 1 +" | 3100 1 + i -+ 1 2000
5 e 0 4+ | 9009 2 + 1 4] 4300
6 + | 1 | + 13600 3 + | 1 | -+ | 2000
7 i 0o | 4+ | 9000 4 + 1 4 | 5300
5 I -+ 2000 0740 - - 36
6 -+ 1 6300 1 ‘ :1- : j}— éggg
7 :1: { 2000 2 + |1 ] a0
0730 1| 4+ {7300 3 4+ 1 | 4| so00
1 + | 1t | + | 2000 4 Ll 1| & 5800
2 + | 1 | 4+ {8300 5 + ot ] ] 5000
3 + ] 1|+ |50 6 + | 1 | £ | 6900
4 i + 1400 7 4 1 -+ 5000
5 , 1 4- ] 5000 0750 + i -+ 8000
6 j: ! + | 2500 | 4+ 1 1 | 4+ | 5000
7 I + | 5000 2 + 1 -+ 9100




/106

INITIAL DATA FOR SECOND NUMERICAL EXAMPLE
Address Command Comments
0000 30 | 0100 0014 Initial data input card.
1 31 0622 1 0007
2 77 0060
3 0622 | 0002 | 0622
4 34 0134
INITTIAL DATA
Address Command Comments
0622 0 1 | 1000 (b-b) is dlf?erénce be?. semlax?s S ar.xd‘ S..
I 0 | -+ | 5000 b is the semi-minor axis of basic ellipse:S.
4 0011 [N is length of prog. for computing boundary func.
5 0000 § 0053 | 0000 |Values of norm. derivative of unknown func. N2=53(8)'
6 03 | 0017 | 0017 | 0001 |Beg. of program for computing boundary function.
7 03 | 0020 | 0020 | 0002
0630 01 0001 | 0002 | 0001
i 03 | 0001 1 0001 | 0001
2 03 | 0017 | 0020 | 0002
3 25 | 0002 { 0001 | 0002
4 04 | 0002 ] 0001 ! o001
5 15 | 0001 | 0565 | 0001
6 34 | 0555 | End of prog. for computing boundary function.
NUMERICAL DATA
Address Numbers Address Numbers
0637 o | + | 1000 6 ; 1
0640 :t 0o | + |8500 7 ¥l o ¢ jo00
I + | o | + | 1000 0650 + 11 | T 1050
2 + | o} + |9000 ! + 1 o | X 1000
3 1+ o | 4 | 1000 2 + | 1 | 4+ | tico
4 + 0 | + |9500 3 0 | 4+ | 4000
5 + 0 | + | 1000 4 1 | 4+ | 1200
5 4+ 1 o | + |4000 2 + 1| 4 [ 1100
8 + | 1|+ | 1400 3 + | 1| + | 1000
7 + | o | 4+ |4000 4 4+ | 1 | 4+ | 1300
0660 + 1 + | 1600 5 + 1 + 1000
AR SEIREEIE
2 . i 1000
3 + 0 -+ 1 4000 0730 i 1 :t 2400
4 + 1 1 | <4 | 2000 1 1 + | 1000
5 + 1 0 i 4000 2 :!: 1| 4 | 2500
6 + 1 2200 3 + i + 1500
-+ 0 -+ | 5000 4 —+ 0 + 8000.




NUMERICAL DATA (con't)

Address Numbers Address Numbers
‘ 4 L 0 | 4+ {8500 5 i 4 1500
0679 + | 0o | + |5000 6 3*; 1| + | 3000
2 -} 1 4+ | 2500 7 + 1 -+ 1500
3 4+ | o | 4+ | 5000 0740 + | 1 4+ | 3700
4 +~ | t .+ |3000 1 + |1 |+ | 1500
5 + 0 4 | 5000 2 + 1 + 4400
6 + 1 -+ | 3500 3 + 1 4 1500
7 4+ | o0 4- | 5000 4 + I + | 5100
-0700 + i 4 4000 5 4 1 + 1500
1 + | 0o | < |5000 6 4+ 1 v | 4+ 1 s80
2 -+ i e 4500 7 - 1 -+ 2000
3 + | o | 4 | 7000 0750 4+ | 0o | 4+ | 8000
i 4+ | o | 4. |8000 1 + 1 4+ | 2000
5 4+ 1 o | + {7000 2 + 1 0 | 4 | 9000
6 + 1o | 4 {9000 3 + |1 4+ | 2000
7 + 0 | + | 7000 4 + 1 L 1000
Q710 +- 1 -+ | 1500 5 + 1 -+ 2000
1 + 0 | -+ | 7000 6 o+ 1 + 2000
P] - 1 -+ 1700 7 -+ 1 -+ 2000
3 + | o | + {7000 0760 1 | 4+ | 3000
1 + | 1 + | 1900 1 i 1 | + | 2000
5 + ] 0 + | 7000 2 + I + | 4000
6 + 1 + | 2100 3 4+ 1 4 | 2000
7 4+ | t | 4 |71000 4 + | 1 | 4+ | 5000
0720 + 0 -+ 18000 ’
+ | 1| + |1000
OPERATIONAL CODE FOR METHOD OF FUNCTIONAL EQUATIONS
Address Command Address Command
0000 00 0020 71 0041
1 30 0100 1647 1 35 0050 0041 0024
2 31 0014 | 0050 2 33 0002 |
3 35 0050 | 0005 | 0006 3 34 0015
4 33 Q001 4 30 0100 0004
5 42 0337 | 2154 | 1211 5 31 0001
6 30 1400 1043 6 34 0001
7 31 | 0342 | 0050 7 30 0400 1043
0010 30 0400 1043 0030 31 Q060 0007
1 71 0044 1 35 0007 0044 0474
2 35 0050 | 0044 | 0015 2 33 0003
3 33 0001 3 34 0027
4 34 0006 4 30 0400 1044 0255
5 30 1400 | 1044 | 0255 5 31 0340 0007
6 31 1406 | 0050 6 35 | 0007 0041 0340
7 30 0400 | 1044 | 0255 7 33 0004
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OPERATIONAL CODE FOR METHOD OF FUNCTIONAL EQUATIONS (con'td)
Address Command Address Command
0040 34 0034 0140 0624 0042
1 00 1 62 10042 | 0124 | 0344
2 00 2 22 | 0316 | 0344 | 0144
3 00 3 22 | 0317 | 0344 | 0146
4 00 4 00
5 00 5 31 0626 | 0046
6 00 6 00
7 00 7 71 0010
0050 00 0150 35 | 0046 | 0010 | 0153
1 00 1 33 0005
2 00 2 34 0144
3 00 3 0146 0054
4 00 4 22 | 0314 | 0042 | 0344
5 00 5 62 | 0322 | 0344 | 0344
5 00 6 17 10344 | 0124 | 0345
7 00 7 35 | 0345 0161
0060 34 0002 | 0061 0160 62 | 0344 | 0124 0344
i 26 | 0002 | 0026 | 0063 1 0344 0055
9 22 10124 | 0063 | 0063 2 9% | 0344 | 0013 | 0345
3 33 0002 | 0001 3 22 | 0345 | 0315 | 0057
4 17 | 0125 | 0001 | 0004 1 17 | 0625 | 0320 | 0047
5 20 | 0001 | 0004 | 0076 5 17 | 0525 | 0125 | 0346
6 92 | 0124 | 0076 | 0076 6 75 | 0346 0232
7 22 | 0125 | 0004 | 0001 7 17 | 0625 | 0321 0345.
0070 22 | 0126 | 0001 | 0122 0170 22 | 0346 | 0346 | 0346
1 22 | 0002 | 0124 | 0063 1 26 | 0346 | 0113 | 0346
9 76 | 0001 { 0133 | 0117 2 36 | 0346 | 0344 | 0225
3 33 0002 3 62 | 0346 | 0344 | 0346
4 17 | 0126 | 0076 | 0001 4 0124 0343
5 35 0001 | 0063 5 62 | 0344 | 0124 | 0347
6 33 0002 | 0002 6 22 10323 0347 | 0177
7 92 10076 | 0126 | 0076 7 00
0100 22 | 0124 | 0122 | 0122 0200 31 0623 | 0010
{ 45 0001 | 0002 1 92 | 0324 | 0345 | 0203
2 26 | 0002 | 0106 | 0004 2 77 0060
3 03 | 0127 | 0002 | 0002 3 00
4 17 | 0130 | 0001 | 0003 4 00
5 76 | 0131 | 0003 | 0073 5 22 | 0325 | 0347 0210
6 41 | 0132 | 0004 | 0004 6 22 | 0327 | 0344 0212
7 01 | 0003 | 0002 | 0002 7 22 | 0330 | 0344 | 0213
0110 66 | 0001 | 0004 | 0001 0210 00
i 76 0001 | 0103 1 31 0623 | 0010
2 25 | 0002 | 0004 | 0001 2 00
3 36 | 0132 | 0004 | 0121 3 00
4 04 | 0001 | 0127 | 0001 4 31 0623 | 0010
5 42 | 0004 | 0132 | 0004 5 35 | 0010 | 0326 | 0220
6 35 0113 6 33 0006
7 03 | 0001 | 0127 | 00OI 7 34 €210
0120 41 | 0004 | 0132 | 0004 0220 35 | 0342 | 0343 | 0C27
1 36 | 0125 | 0004 | 0072 1 22 | 03301 0057 | 0330
2 33 0002 | 0003 2 922 | 0045 | 0124 | 0045
3 35 0074 3 00
4 0001 4 34 0172
5 3777 5 0343
6 37 3777 6 0346 0344
7 04 | 1200 7 26 | 0346 | 0013 | 0345
0130 3700 0230 0344 0053
1 1100 1 34 0175
2 2040 2 : 0331 0344
3 34 | 1463 | 0631 | 2315 3 26 | 0331 | 0013 | 0345
4 0045 4 34 0204 0175
5 14 0342 | 0343 5 0344
6 0622 0043 6 22 0211 0337 0211
7 0623 0051 7 22 | 0327 | 0331 10327
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OPERATIONAL CODE FOR METHOD OF FUNCTIONAL EQUATIONS

(con't)

/109

Address Command Address Command
0240 0211 0214 0340 0003 0626
1 0625 0001 1 0005 0627
9 25 | 0001 | 0077 | 0345 2 04 | 0001 0126 | 0004
3 02 | 0332 | 0345 | 0332 3 14 10004 | 0003 | 0004
4 0623 0002 4 41 Q004 0130 (04
5 0002 0003 5 26 | 0004 | 0046 | 0002
5 0334 0304 6 35 | 0002 0066
7 0624 0004 7 02 | 0127 0003 0003
0250 0004 0005 0350 26 | 0004 | 0036 | 0005
1 03 | 0005 | 0005 | 0006 1 03 | 0003 | 0121 0004
2 03 | 0051 | 0051 | 0007 2 03 | 0004 | 0004 | 0003
3 04 | 0006 | 0007 | 0006 3 01 0003 0122 | o002
4 03 0003 | 0003 | 0007 4 03 0002 0002 | o002
5 01 | 0006 | 0007 | 0006 5 01 | 0002 | 0003 | Q003
6 36 | 0006 | 0332 | 0276 6 01 {0003 | 0123 | opos
7 00 7 01 [ 0002 0124 | 0002
{0260 01 0005 | 0001 | 0005 0360 03 0002 0003 0002
1 34 0257 | 0251 1 02 | 0125| 0002 | 0003
2 0335 0304 2 04 | 0004 0003 0002
3 02 | 0004 | 0001 | 0004 3 25 | 0002 | 0077 | 0003
4 34 0257 | 0250 4 03 10003 ) 0003 | 0004
5 5 01 | 0127 | 0004 | 0003
6 01 | 0003 | 0001 | 0003 6 04 | 0002 | 0003 | 0002
7 34 0257 | 0246 7 02 0127 0004 0004
0270 0336 0265 0370 04 | 0004 0003 0003
1 02 | 0002 | 0001 | 0002 1 22 | 0117 | 0005 | 0004
2 34 0257 | 0245 2 76 0004 0120 0114
3 0343 3 0002 0004
4 0053 4 0003 0002
5 34 0344 0306 5 0004 0003
6 0003 0626 6 15 0002 0005 0002
7 0005 0627 7 22 0005 0127 0004
0300 29 0276 | 0333 | 0276 0400 15 0003 0004 0003
1 99 10277 10333 | 0277 1 37 10400
2 59 | 0344 | 0333 | 0344 2 37 | 0600
3 35 | 0344 0055 | 0305 3 75 1552 3107 0735
4 00 4 75 | 3117 | 0500 1322
5 0124 0343 5 74 | 3210 | 3556 1027
6 62 | 0344 | 0124 | 0347 6 1322 | 0647 1264
7 34 0223 | 0205 7 75 | 1621 2273 | 9707
0310 0344 0410 1444 0773 1242
1 0340 0276 1 0l 1000
2 0341 0277 2 1000
3 34 0304 3 36 | 0pot 0161 0153
4 0626 4 © 06 | 0001 0001 0002
5 0001 5 0l |o0002| 0162 | 0003
6 30 1400 | 1330 6 02 0002 0162 0004
7 30 | 0400 | 1330 7 04 | 0004 | 0003 | 0003
0320 3777 0420 43 0003 0003 0002
1 3777 1 43 | 0155 | 0002 | 0004
2 3406 2 41,1 0004 0156 0004
3 30 0100 3 43 0004 0002 0004
4 0623 0623 4, 41 1 00041 0157 | 0004
5 30 1403 5 43 0004 0002 0004
6 77 3777 | 3777 | 3777 6 01 0004 0160 0004
7 o0 | 0010 | 0326 | 0623 7 03 | 0004 0003 | 0002
0330 30 | 1401 | 0000 0430 07 | 0001 0004
1 : 0003 i 02 0004 0130 0004
2 ol 1000 2 03 0004 0163 0004
3 0002 3 0l 0004 0002 0002
4 0260 4 35 0154
5 34 0263 5 33 0013
6 34 0271 6 37 :
7 34 0003 7 12 1150 0200
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OPERATIONAL CODE FOR METHOD OF FUNCTIONAL EQUATIONS

(con't)

/110

Address Command Address Command
0440 06 0006 | 1450 | 0074 0540 03 0334 0333 0223
1 02 0252 | 2526 | 3165 1 01 0331 0333 0227
2 01 | 1777 | 3777 | 3775 2 0227 0001
3 41 1000 3 00
4 1324 | 0236 | 1464 4 01 0335 0001 0242
5 1305 | 3102 | 3770 5 0001 0335
6 14 0004 | 0002 6 06 {0333 0262 | 0337
7 15 | 0001 | 0001 | 0003 7 03 | 0242 0337 | 0220
0450 76 | 0127 | 0003.| 0172 0550 06 | 0333 0262 | 0337
1 03 0003 | 0207 | 0003 1 .01 0331 0337 0247
2 76 | 0003 | 0127 | 0207 2 0216 0251
3 65 -] 0067 | 0004 3 0247 0001
4 65 0004 | 0001 | 0004 4 00
5 76 0003 | 0210 | 0200 5 0l 0251 0001 0251
4] 04 0003 | 0211 | 0003 6 0l 0247 0333 0247
7 35 0172 7 36 | 0247 | 0227 | 0271
0460 26 0002 | 0004 | 0002 0560 05 0251 0274 0251
i 03 0003 | 0210 | 0003 1 0l 0242 0251 0242
2 14 0003 { 0003 | 0005 2 01 0242 0251 0251
3 22 0002 | 0005 | 0002 3 04 0333 0330 0337
4 76 0002 | 0212 | 0176 4 03 0251 0337 0251
5 47 | 0004 0004 5 06 | 0333 | 0300 | 0333
& 26 0004 | 0006 | 0004 6 02 0251 0220 0337
7 55 0004 | 0001 | 0004 7 76 0251 0127 0307
0470 22 0004 | 0002 | 0002 0570 04 0337 0251 0337
1 37 | 0734 | 3262 | 2000 1 0251 0220
2 04 1200 2 76 0223 0337 0266
3 04 1177 { 3777 | 3777 3 00
4 0100 4 00
5 34 | 0336 | 0214 5 0227 0331
6 26 0336 | 0026 | 0335 6 05 0333 0302 0333
7 14 0322 | 0223 | 0312 7 34 0252
0500 40 | 0323 0227 0600 0337
i 16 0335 | 0316 | 0220 1 ) 0216
9 00 2 01 0220
3 17 | 0337 | 0326 | 0242 3 0247
4 16 | 0242 | 0223 | 0223 4 0331
5 00 5 74 0227 0221
& 62 0223 | 0242 | €223 6 0001
7 22 0223 | 0324 | 0223 7 0001
0510 26 0337 | 0013 | 0337 0610 3777
1 00 1 0003
2 34 0227 | 0221 2 03 1400
3 22 0335 | 0325 | 0335° 3 00
4 34 0227 | 0217 4 00
5 17 0337 | 0326 | 0337 5 00
& 26 0337 | 0126 | 0311 6 00
7 16 0317 | 0311 | 0251 7 00
0520 16 0337 | 0311 | 0311 0620 00
i 16 0320 { 0311 | 0311 1 00 .
2 22 | 0335 | 0325 | 0335 2 25 0040 | 0002
3 16 0335 | 0321 | 0242 3 76 | 0001 0343 0366
4 00 ’ 4 06 0001 0001 0005
5 0247 0261 5 41 0005 0370 0003
& 0247 0272 6 36 0371 0005. 0346
7 22 0336 | 0327 | 0336 7 42 0003 0372 0003
0530 0331 0001 0630 17 0001 | 0373 0005
i 00 1 0371 0004
2 0001 0335 2 36 0005 0127 0352
3 00 3 0367 0004
4 02 0332 | 0331 | 0337 4 03 0004 0003 0003
& 36 0333 | 0337 | 0256 5 04 0005 0003 0004
6 0337 0333 6 01 0003 0004. 0003
7 0336 0312 7 04 | 0005 0003 0008
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OPERATIONAL CODE FOR METHOD OF FUNCTIONAL EQUATIONS

(con't)

/111

Address Command Address Command
0640 65 | 0003 | 0076 | 0003 0740 03 | 1311 2442
i 0l | 0003 | 0005 | 0005 I 3324
9 17 | 0001 | 0002 | 0003 2 15 | 2456 | 0461 | 2460
3 26 | 0001 | 0101 | 0002 3 0t | 3000
4 16 0003 | 0002 | 0002 4 03 2457 2442
5 05 | 0005 | 0002 | 0002 5 3323
6 36 | 0343 | 0001 | 0366 6 1311
7 33 0010 7 03 2442 2442
0650 37 0750 03 | 2510 | 2511 | 9442
1 1473 | 2600 1 0002
9 1410 2 04 | 0127 | 0002
3 1111 | 1040 3 03 2511
4 77 | 0034 | 1400 4 ) 3777
5 11} 1777 | 3777 | 3777 5 30 | 0410 0372
6 0030 6 02 |.0051 | 0043 | o052
7 3242 2453 7 04 | 0052 | 0051 | 0050
0660 3243 2454 0760 9445
1 0031 1 04 | 0406 | 0405 | 000!
9 40 2 77 0060
3 03 | 1444 | 0773 | 1242 3 03 | 0003 | 0050 | 2244
4 72 1217 | 1341 | 1075 4 03 | 0002 0052 3245
5 54 | 1524 | 2377 | 1607 5 72 2445
6 00 6 3244 0001
7 06 | 1624 | 2734 | 0260 7 77 0164
0670 07 1320 0770 32 0002
1 11 | 1034 I 22 {0504 | 0325 | 0504
9 00 2 22 | 2446 | 0324 | 2446
3 10 | 1320 3 75 | 2446 | 0436 | 0504
1 10 | 1604 4 22 | 0477 1 0325 | 0477
5 06 | 1320 5 22 | 0501 | 0436 | 0501
S 11 | 1166 6 22 10502 | 0436 | 0502
7 10 | 1034 7 922 | 24451 0324 | 2445
0700 1| 1224 1000 75 | 2445 | 0374 | 0477
1 10 | 1130 1 72 | 0467 9445
2 Q7 | 1700 2 0325 2446
3 1 | 1130 3 0467 2447
1 06 | 1700 4 22 | 2445 | 0467 | 2445
5 10 | 1700 5 77 0213
6 05 | 1700 6 0400 | 0401 | 0402
7 10 | 1510 7 0403 | 0404
0710 07 | 1130 1010 34 0567 | 0540
1 10 | 1774 1 0404 1312
5 07 | 1510 2 922 10527 | 0324 | 0527
3 11 | 1072 3 22 | 2447 | 0467 | 2447
1 04 | 1700 4 75 | 2447 | 2445 | 0523
5 10 | 1414 5 22 | 0541 | 0467 |-054)
6 10 | 1224 6 22 | 0542 | 0467 | 0542
7 11 ] 1262 7 22 | 2446 | 0395 | 2446
0720 0002 1020 75 | 2446 | 0377 | 0521
1 77 | 8777 | 3777 | 3777 I 34 0570
9 0001 2 0556
3 03 | 0002 | 3324 | 2462 3 3244 2453
1 73 | 1467 | 2145 | 2695 4 3245 2454
5 03 1441 | 0131 | 0455 5 77 Q0640
6 0373 6 02 |0003| 2453 | 2455
7 2455 2500 7 03 | 24551 92455 | 2455
0730 3244 2460 1030 03 | 0002 | 0051 | 2457
i ‘3245 2461 1 02 | 2457 | 2454 | 2457
5 000! | 0001 2 03 ! 2457 | 92457 | 9457
3 6372 3 0t [ 2455 | 2457 | 2455
4 03 2500 | 1312 | 2456 4 0001 2452
5 63 | 1506 | 3342 | 3530 5 2455 G001
6 2456 2511 6 77 0131
7 03 | 2510 | 2510 | 2442 7 25 | 0002 I 0077 | 2455




OPERATIONAL CODE FOR METHOD OF FUNCTIONAL EQUATIONS (con't)

/112

Address Command Address Command

1040 00 1140 01 | 2456 | 2442 | 2456
1 2455 2456 1 22 | 2457 | 0325 | 2457
2 22 | 0375 | 2447 | 0561 2 75 | 2457 | 2452 | 0667
3 00 3 00
4 22 | 0376 | 2447 | 0563 4 22 | 0661 0324 | 0661
5 00 5 22 12452 | 0325 | 2452
6 2452 0001 6 62 | 2451 | 0440 | 2451
7 34 0556 | 0543 7 75 | 2452 | 2443 | 0647

1050 03 | 2455 | 2456 | 0001 1150 34 0673
1 00 1 62 | 2454 | 0325 | 2454
2 1312 0001 2 62 | 2453 | 2455 | 2453
3 77 0340 3 62 | 2455 | 0440 | 2455
4 04 | 0127 | 0002 | 3324 4 34 ' 0654
5 22 | 0325 | 0325 | 2443 5 22 | 2450 | 2443 | 2450
6 0454 0661 6 22 | 2450 { 0464 | 2446

-7 0455 0703 7 2444 2451

1060 62 | 2443| 0325 | 2444 1160 2443 2452
i 62 | 2444 | 0325 | 2445 1 0465 2453
2 0325 | - | 2446 2 2454
3 0325 2447 3 15 2455
4 2450 4 16 | 2446 | 2453 | 0704
5 22 | 2450 | 0325 | 2450 5 00
8 22 | 2447 | 2450 | 2447 6 00
7 75 | 2450 | 2444 | 0603 7 01 .| 2455 2442 2455

1070 0456 2450 1170 22 | 2454 | 0325 | 2454
] 0457 2451 1 35 | 2454 | 92443 | 0714
2 0460 0623 2 22 | 0703 | 0450 | 0703
3 0325 2452 3 62 | 24461 2452 | 2446
4 0440 2453 4 62 | 2452 | 0325 | 2452
5 22 | 2450 | 2447 | 2454 5 34 0702
5 2455 6 22 | 2447 | 2445 | 2447
b 15 2456 7 22 | 2447 { 0464 | 2446

1100 16 | 2451 | 2454 | 0617 1200 0466 2454
1 00 1 15 2452
2 01 | 2456 | 2442 | 2456 2 2456
3 22 | 2455 | 0325 | 2455 3 1 2454 0723
4 75 | 2455 | 2446 | 0631 4 16 | 2446 | 2453 0725
5 00 5 00
6 22 | 0623 | 0324 | 0623 6 25 | 2442 | 0001 2442
7 22 | 2446 | 0325 | 2446 7 00

1110 22 | 2451 | 0440 | 2451 1210 01 | 2452 | 2442 2452
1 75 | 2446 | 2543 | 0613 1 22 | 2456 | 0325 2456
5 34 0634 2 35 | 2456 | 2451 0734
3 29 | 2454 | 9452 | 2454 3 22 | 0723 | 0440 0723
4 29 | 2451 | 2453 | 2451 4 62 | 2446 | 0325 2446
5 34 0616 5 34 0722
6 0395 2446 6 22 | 2454 | 0450 2454
7 0127 2510 7 62 | 2446 | 0467 2446

1190 2450 1220 62 | 2451 | 0325 2451
1 22 | 2450 | 2446 | 2450 1 75 | 2451 0720
2 35 | 2446 | 2444 | 0643 2 22 | 2450 | 0463 2450
9 99- | 2446 | 0325 | 2446 3 26 | 2450 | 0126 2453
4 34 0637 4 0470 2451
5 92 | 0462 | 2444 | 2446 5 16 | 2453 | 2451 0746
6 22 | 2450 | 0463 | 2451 6 01 | 2455 | 2452 0001
7 26 | 2451 | 0113 | 2451 7 77 0340

1130 0325 2452 1230 00
1 2451 2453 1 0325 2446
2 2446 2454 2 0471 2452
3 26 | 2445 | 0113 | 2455 3 22 | 0463 | 2447 2451
4 2457 4 26 | 2451 | 0126 2451
5 15 2456 5 16 | 2452 | 2451 0755
f 16 | 2453 | 2454 | 0655 6 16 | 0755 | 2450 0755
7 00 7 0




/113

OPERATIONAL CODE FOR METHOD OF FUNCTIONAL EQUATIONS (con’t)
Address Command Address Command
1240 22 | 2446 | 0325 | 2446 1334 33 0010
1 35 | 2446 | 2443 | 0762 1 34 1053
2 22 | 0755 | 0472 | 0755 2 0452 1070
3 34 0755 3 00
4 22 | 2453 | 0325 | 2443 4 31 2500 ‘ 0010
5 75 | 2443 | 0377 | 0574 5 35 | ooio] 0437 ! 1066
6 0324 2463 6 33 0011
7 0441 2464 7 3 1061
1250 14 2446 | 2465 1350 2454
1 0445 1022 1 15 2452
2 15 2454 2 00
3 2464 1012 3 01 | 2456 | 2452 | 2452
4 0446 1002 4 22 11070 | 0450 | 1070
5 0447 1003 5 922 | 2454 | 0324 | 2454
6 2445 6 75 | 2454 | 0451 1070
7 15 2455 7 03 | 2452 | 0442 | 2452
1260 2454 0001 1360 22 2455 0324 2455
1 77 0060 1 35 | 2455 | 2453 | 1106
2 0003 2456 2 76 | 2452 | 0453 | 11922
3 03 -] 0002 | 0051 | 2457 3 72 | 24592 0001
4 00 4 77 0164
5 00 5 32 | 0002
6 02 | 2456 | 2460 | 2460 6 33 0001
7 03 | 2460 | 2460 | 2460 7 34 1122
1270 02 2457 | 2461 | 2461 1370 02 {0127 2452 2452
1 03 | 2461 | 2461 | 2461 1 76 | 2452 | 0453 | 1115
9 01 | 2460 | 2461 | 0001 2 72 | 2452 0001
3 77 0131 3 77 0164
4 00 4 32 | 0002
5 01 | 2455 | 2462 | 2455 5 32 | 0324
6 22 | 1002 | 0467 | 1002 6 33 0002
7 22 | 1003 | 0467 | 1003 7 22 11053 | 0444 | 1053
1300 22 | 1012 | 0440 | 1012 1400 22 | 2453 | 0324 | 2453
1 22 | 2445 | 0324 | 2445 1 22 | 2450 | 0324 | 2450
2 75 | 2445 | 2463 | 1002 2 75 | 2450 | 0374 | 1051
3 95 | 2455 | 0077 | 2455 3 . 34 0034
4 00 , 4 22 | 1061 | 0444 | 1061
5 22 | 1022 | 0324 | 1022 5 34 1060
6 01 | 2454 | 0442 | 2454 6 0054 0341
7 36 | 2454 | 0443 | 0771 7 00
1310 30 | 1403 0371 1410 31 0626 | 0010
1 3l 2500 | 0010 1 35 | 0010 | 0046 | 0346
2 20 | 0010 | 0437 |. 3072 2 33 0012
3 30 | 1410 0372 3 34 0341
4 31 2500 | 0010 4 0341
5 30 | 0410 0372 5 3244 0014
6 71 0010 6 3245 0015
7 35 | 0010 | 0437 | 1040 7 77 0913
1320 33 0007 1420 0557 | 0560 | 0561
1 34 1026 1 0562 | 0563
2 22 | 1031 | 0444 | 1031 2 34 0556 | 0835
3 22 | 1033 | 0444 | 1033 3 0563 3214
4 22 | 2463 | 0324 | 2463 4 22 | 0347 | 0615 | 0347
5 22 | 2465 | 0440 | 2465 5 22 | 0350 | 0615 | 0350
6 22 | 2464 | 2465 | 2464 6 22 10355 | 0324 | 0355
7 22 | 2446 | 0324 | 2446 7 22 | 0341 | 0324 | 034l
1330 75 | 2446 | 0374 | 0767 1430 75 | 0341 | 0564 | 0047
1 2450 1 0324 0216
9 0324 2453 2 0566 0217
3 . 2455 3 0567 0220
4 0473 1061 4 0222
5 30 | o410 0372 5 15 0221
3 31 1312 | 0010 6 16 0217 0220 0371
7 35 | 0010 | 0437 | 1060 7
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OPERATIONAL CODE FOR METHOD OF FUNCTIONAL EQUATIONS (con't)

/114

Address Command Address Command
1440 01 | 0221 | 0215 | 0221 1540
i 22 | 0217 | 0525 | 0217 1 72 | 0607 0503
9 22 | 0220 | 0570 { 0220 2 0610 0513
3 22 | 0222 | 0324 | 0222 3 15 0220
4 75 | 0222 | 0216 | 0370 4 15 0221
5 0221 3164 5 34 0556 | 0534
6 22 | 0377 | 0324 | 0377 6 0001 0010
7 22 | 0216 | 0324 | 0216 7 0011 0001
1450 75 | 0216 | 0571 | 0365 1550 77 0131
] 3406 1
2 22 | 0403 | 0324 | 0403 2 25 10001 | 0077 | 0oot
3 75 | 0403 | 0570 | 0403 3 02 |ooo1 | 0010 | 0ooi
4 0572 0216 4 01 102211 0001 | q221
5 0217 5 22 0503 | 0570 | 0503
6 0573 0220 6 0l | 0220 0611 0220
7 0574 0422 7 36 020 0612 | 0477
1460 0221 1560 04 | 0221 0613 | 0016
1 30 | 0410 0372 1
2 31 2216 | 0010 2 77 0164
3 35 | 0010 | 0565 | 0420 3 32 | 0002
4 33 0013 4 22 10513} 0325 | 0513
5 34 0413 5 75 105131 0614 | 0513
5 16 | 0220 | 0216 | 0421 6 22 10471 | 0615 | 0471
7 7 22 | 0472 | 0615 | 0472
1470 1570 22 10602 | 0603 | 0602
1 22 | 0422 | 0575 | 0422 1 75 | 0602 | 0216 | 0471
2 22 | 0220 | 0325 | 0220 2
3 22 | 0221 | 0324 | 0221 3 22 | 0606 { 0057 | 0606.
4 75 | 0221 | 0576 | 0420 4 22 102071 0324 | 0217
5 22 | 0413 | 0577 | 0413 5 75 10217 ] 0045 | 0460
8 29 | 0216 | 0570 | 0216 6 35 | 0053 0533
7 22 | 0217 | 0324 | 0217 7 0053 0216
1500 75 | 0217 | 0564 | 0410 1600 34 0524 1 0460
1 35 | 0047 0452 1 33 | 0002
2 35 | 0047 | 0325 | 0437 2 0220 0001
3 35 | 0047 | 0600 | 0445 3 ” 0060
4 0601 0444 4 0003 0017
5 3164. 0001 5 03 10051 | 0002 | 0020
6 77 0164 6 03 | 0051 0003 0010
7 32 | 0002 7 0002 0011
1510 22 | 0437 | 0325 | 0437 1610 03 | o010 | 0014 | golo
i 75 | 0437 | 0602 | 0437 1 03 | 0011 0015 | 001l
2 34 0452 2 01 0010 o011 | o0ol0
3 3406 0001 3 02 | 0051 | 0010 | Q010
4 77 0164 4 02 | 0017 | o014 | go11
5 32 | 0002 5 03 | 0011 o001l | goll
6 99 | 0445 | 0325 | 0445 6 02 ] 0020 | 0015 | gol2
7 75 | 0445 | 0324 | 0445 7 03 {0012 0012 | o012
1520 26 | 0042 | 0013 | 0215 1620 o1 |oo12| oo11 | ool
1 22 | 0342 | 0215 | 0462 1 04 {0010 | o011 | golo
9 26 | 0215 | 0013 | 0215 2 34 0626
3 35 | 0045 0531 3 03 [ oo10{ o001 | gool
4 0055 0216 4 00
5 0217 5 40
6 22 | 0606 | 0216 | 0461 6 03 | 1444 | 0773 | 1242
7 7 72 | 1217 | 134t | 1075
1530 1630 54 | 1524 | 2377 | 1607
i 35 | 0010 | 0565 | 0466 1 00
2 33 0014 2 0030
3 34 0461 3 77 | 3777 | 37177 | 3777
4 22 | 0604 | 0215 | 0471 4 03 | 3324 0215
5 22 | 0605 | 0215 | 0472 5 3214
6 / 0602 6 0001
7 7 0031




OPERATTONAL CODE FOR METHOD OF FUNCTIONAL EQUATIONS (con't)

=
ot
(%]

Address Command Address Command

1640 3164 3 0627 0015
1 03 2216 0222 4 30 | 0401
2 01 0222 | 3406 | 3406 5 03 | 0002 3406 0001
3 0001 | 0001 6 0014 0001
4 0372 7 73 1467 2145 2413
5 0373 1660 03 1 1441 0131 0362
6 0010 1 10 1750
7 72 2 0017 0001

1650 3214 0001 3 0002
1 0002
2 0626 0014

§ 12. SOLUTION TO THE TWO-DIMENSIONAL EXTERNAL DIRICHLET
PROBLEM BY THE METHOD OF GENERALIZED FOURIER SERIES

The computational process consists of the following steps:

€]
(2)
3
(4)
(5)
(6)
(7)
(8

Let us take two confocal ellipses:

the basic

Computer Program

Computation of uniformly distributed points on auxiliary ellipse;

Computation of scalar products;

Computation of coefficients of orthonormalization;

Construction of orthonormalized systems;

Checking accuracy of this orthonormalization;

Computation of Fourier coefficients Bi;

Computation of coefficients Ci'

Finding harmonic function outside ellipse s.

ellipse s:

S:x;=acosg, x,=bsing and the auxiliary ellipse

8t ) =gcos ey, P =Fsine; (I);

M@EP, ) €sy,

i=12 ..

, 24.




The points M, x{’) are distributed on the auxiliary ellipse uniformly
with an interval of =/12); the values of the arguments g« (i=1,2,..., 24)

are given in Table 7.

The points Mx®, x{) are computed and printed out in the following

sequence x{V, x{; x®, x@;..; x, x{* . The scalar products

(2)
(@: (), 92 (9))=] ;Pn sy,
S
1
@y == 5 In [(’ﬁ“’xin)a—!- (xz——xg”)”} i=1,2,..,24 k=12,..,1i
are computed, as are the coefficients of orthonormalization Aik by the
following formulas: ‘
Akv!h=.——_i-"-y k=1, 2, vees 24 (31)
&l
i k=234 24
Ay py =4 . N TEHD T 3.)
kh‘l R Ry R j 4 3R]y Ro{ i=1,2,3,..., E—1 2

j=l1

where

E—1
Il gnl|=]/ J[%-l— Z By, ;9 ]dsu ==
S

=1

k—1

Rl P
== ‘/Z B, ki [?i—-/d_sy-{—QZBh, Py Z Bh,,'J‘cpk__lcp, ds,, (35
=0 p .

s j=0 §== -1 s
Bk!h.:I’ k=21 3’ 41"" 24

|



g

k—j
k=2 3,4 24 ‘
“,__:-—-— A__’ , 9 Yy Rpeeey 5‘3
B )= g Ao 1 (Pu(9) 91 9)) j=k1, k=2, ] 4

i=l

b—j
Bln 1= E

=1

k=23,4,..., 24 {35}

a’ __A_.y ]
ks kit Brmin] j=k—1, k=2,..1

After this we construct the orthonormalized system

. 2r
W)= Apme) =070 55

R= i=1, 2,..., 24’ <A%)
i=1,2,..., 250
and the orthonormalization is. checked within an accuracy of 10—4
2r gy 250
T
1= f P ds = 1 950 Z b (@) b (@) <10™*  when i=k,
) 0 =1
" or 250 (5)
D .
| rtnts = 25 5 @) a<ion when ik

0 : j=1

Then we compute the Fourier coefficients

250
2r
B[= [ f(a) q’l dsl = —536__ f(sj) 'IJ‘ (“})' [== 1, 2, ...,.24,
5 ; ©

. 2r
%=0-1 555

where f(a) is the boundary condition and wi i are the orthonormalized func~
L]
tions.




After this we compute the coefficients

24
C, = Y B, A, i=1, 2,..., 24, (7)
F=i

where éi " are the coefficients of orthonormalization.
3

Outside the ellipse we seek the harmonic function u(g, n) in the follow-

ing manner:

24
u (M) = Z C, 9 (M), (8)

i==1

where
1
% (W= 1n [ (18 + (0 — ) ] ME €G.
The program consists of the following basic parts:
(1) Control program;
{2) A program for processing initial and numerical data; 117
{(3) First part of fundamental program;

{4) Second part of fundamental program;

{5) VFinding the harmonic function outside ellipse s.

The program operates in the following sequence: the entire program is
fed into the machine. If the read-in is correct, the control program re-
cards on the zero magnetic drum the first part of the program in cells
0000 - - 1114, and the second part of the program in cells 1115 - 1331,

automatically reads in the initial data input card, which in turn reads in



the initial data in binary notation, converts b and b - b from the decimal
notation system into the binary, and the control transmits the program for

processing the numerical data by the command 0011.

The program for interpreting the initial and numerical data transfers b
to cell 0051, and b - b to cell 0043, and the program for computing the boun-
dary function f(o) is transferred from cell 0626 - 0626 + (n ~ 1) {(where n is
the length of the program in the octal notation system) to the zerc magnetic
drum is cells 1332 - 1332 + (n - 1). (In compiling the program for f{u), the
usable working cells must certainly be allowed for in the length of the pro-~
gram.) After this the program for processing the initial and numerical data
of the coordinates of these points is converted from the decimal notation
system to the binary and transferred to the zero magnetic drum from the cell

2462 - [1420 - n'2—l]8 (if such a number of points exists).

After completion of the operation, the program for processing the
numerical data transmits control to the control program by the command 0225,

after which the first part of the basic program is read out from the drum.

The first part of the program computes the semiaxes of the auxiliary

ellipse b=b-(b-b) and a & b/b, and computes and prints out the auxiliary

points xil), xél); xiz), xéz); e x§24), x§24). The scalar products }Nggqh
Sy
dsl, i=1, ..., 245 k=1, 2, ..., i are computed from the standard program.

We must mention that only the left-hand side of the matrix is computed.

f ®; ¢y ds;,

$

J?z?ldsly ] Py @, ds,

$ : 51

* . e . .

f‘?u ¢ dsy, J Poy P2 Sy, .0, [’Pu Pay dS,.

%

" 81 5 5
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Then the coefficients of orthonormalization Ai k
b

(31} and (32). In computing the coefficients of orthonormalization, there

are computed from Formulas

may be a stop from the command 0343 — if the machine is in good working
order, this means that a certain coefficient A or Ak is found to be
k,k S k=1

negative, and in such case it is recommended to change the dimensions of the

auxiliary boundary sq-
Then the orthonormalized system is computed from Formula (4) and the

orthonormalization is verified within an accuracy of 10—4 from Formula (5).

If the orthonormalization is not carried out within the required accuracy,

then the following is printed out

. 250
Z PF@)>107, i=1,2,..., 24, a;=(j—1)

i=1

2r
250

©

250

1~

and the conditional unit, i.e., the diagonal term, does not reach the re-

Juired accuracy or 250

2n -
950 Zl %y (“1) Py (%) > 1074
I:

is printed out when i # k, i. e. the nondiagonal term does not reach the

required accuracy.

If the number of unprinted diagonal or nondiagonal terms is very high,

then the problem must be cleared and the difference b - b reduced.
After completion of this check, the first part of the program using the
command 1174 transmits control to the control program and the second part

of the program is read out from the magnetic drum.

The second part of the program copies the program for computing the

boundary function f(a) from the magnetic drum, computes the boundary
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. 2 .
values of &;=(—1) ?E%—']=I'2'”"250' the Fourier coefficients Bi
from Formula (6), the coefficients Ci from Formula (7) and prints out the

coefficients Cl’ CZ’ cres C24.

After this, the second program seeks the harmonic function u(f, n)
according to Formula (8) outside the ellipse s, and prints out these points
and the solutions corrdesponding to them in the following sequence: §,,7,,

@ (M) Ep N U Gai M5 -+ 3 By 1w U (Epy M), where n is the number of these points.

Operation of Console

The entire punchcard deck is assembled in the following order:

(1) Basic program input card;
(2) Blank punchcard;

(3) Basic program;

(4) Blank punchcard;

(5) 1Initial data input card;
(6) Blank punchcard;

(7) Initial data;

(8) Blank punchecard;

(9) 1Initial data;

(10) Blank punchcard;

(11) Numerical data;

(12) Blank punchcard;

(13) Numerical data;
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TABLE OF CONTROL STOPS

Contents of
Stop instruction : Reason for stop Action
storage
0004 330007 — — Incorrect program read-in. Repeat read-in.
6204 330002 — — Incorrect input of numerical data.
0023 33 0003 — —
0032 330004 — —
0037 330005 — — Incorrect access to zero magne- Repeat access to
tic drum. dEum with key
art.
0150 33 0006 — — s t
013 330002 — —
0223 330010 — —
1103 330011 — —
1125 330012 — —
1133 330013 — —
ngé 33 0017 — —
0f 330016 — — ‘ . _
0351 3% 0020 — — Igggrgiﬁg access to first magne
0433 330021 — — End of computation.
0073 330002 — — SP-0002 (block transfer 10-+2).
0153 330013 — — SP-0013 (com .
putation of In X).
0370 330010 — — SP-0010 Esquare root extraction).
1155 330014 — — Nondiagonal term does not reach Continue computa-
1165 330015 — — required accuracy. tion with key
’ ‘ Diagonal term does not reach re- start.
quired accuracy.
For stop 33 0007 execute command 34 - - 0176 from console.

It may happen that when the machine is in good working condition it will

often stop on commands 1155 and 1165 and print out the difference

250
l— Z 9, (@) (“j)k> 10~* when i=k

=1 , i=1,2, ..

or

250 '
S ) bae) >0 vhen ik

=1
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In this case, the problem must be cleared and the difference b - b reduced

in the initial data.

The results are printed out in the following sequence: the auxiliary

points xil), xél); xiz), xéz); .ol x§24), x§24) are printed out, following
x(24), ng&) there will be a bit space and the coefficients Cl’ CZ, cosy CZ@

are printed out; without the space the coordinates of only the first designated
point are printed out and the unknown solution corresponding to it, but the
coordinates of the other points and the solutions corresponding to them are
printed out with a space. This happens when the accuracy of orthonormalization

is better than 10_4.

If any term, diagonal or nondiagonal, does not reach the required
accuracy, then following the coefficients Ci’ i=1, ..., 24 there will be

printed out

250

1- 4, () gy ()>10"* when i=F

or

0 k=1,2, ...,
Z $y (%) by (x) > 107" when i==k

j=1

with a space. After these numbers (not reaching the accuracy), the coordinztes
of the designated points (Ei, ni) and the solutions corresponding to them are

printed out.




TABLE 12, MEMORY CONFIGURATION

Designation of data blocks Beginning| End Control sum
Basic program input card. 0001 0005 0005, 0050
Control program. 0006 0057
Program for processing initial

and numerical data. 0060 0346

First program. 0060 1174 0044

Second program. 0220 0434 0047
Initial data. 0622 1332 0013, 0014
Numerical data. 0623 3665 0010, 0011

TABLE 13. MEMORY CONFIGURATION

Assignment in internal memory |Assignment on L
. . During read-~in| During opera- magnetic drum &
Designation of blocks .
‘ tion § s
Beg. End Beg. End | Beg. End g
Basic program input 0001 | 0005
card
Control program 0006 | 0057
Program for processing
initial & numerical
data 0060 | 0345
First part of basic
program 0346 | 1463 0060 1174 | 0000 1114 0
Working cells 2442 | 2471 2442 2471
1766 | 2357 1766 2357
2500 | 3071 2500 3071
Results 3212 3665
3716 3775
Second part of prog. 1464 | 1700 0220 0434 § 1115 1331 0
Working cells 0500 | 0511 0500 0511
1767 2360 1767
Results 3666 3715
b~ b 0622 | 0622 0043 0043
b 0623 | 0623 0051 0051
Prog. for computing 0626 | 0626 0626 0626 | 1332 1332
boundary function +(n-1) +(n-1) +(n-1)
Crthonormalized func. . 1766 2357 0000 23557 1
Numerical data, i.e.,
designated points 0623 | 3662-n | 0626 3665-n] 2462 11521-n
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Set Up of Initial Data

The input card for the initial data has the following form:

30 0100 n—1
31 0622 0014
30 0100 : n—1
31 0622 0013
35 0014 0013 0010
33 0022
34 0001
77 0060
0622 0002 0622
34 0134
00
00

where n is the length of the program for computing the boundary functiom £{a).

The initial information requires recording the following original data
in the cells 0622 - 0625: 0622 — the difference b - b in the decimal nota-
tion system, where b and E, are the semi-minor axes of the confocal ellipses
s and s1 respectively. 0623 - n for the third address — length of the pro-
gram for computing the boundary function f(a) in the octal notation system.
In the second address of cell 0625 — the number of designated peints N is
written in the octal notation system. The number of designated points must

not exceed [1420—n/2];, if n is even; [1420—(n—1)/2];, if n is odd.

The program for computing the boundary function must begin from cell
0626. The length of the program for computing the boundary function f{a)
must not exceed 600]10 or 1130|8.

If in computing f(a) the values of cos x and sin x are necessary, then
they can be taken from cell 0020 and 0021. In compiling the programs the
working cells used must certainly be taken into account in the length of the

program for f(a).
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If cos x and

sin x are not necessary, cells 0020 and 0021 may be

used as working cells. The numerical data must follow directly after the

program for the boundary function f(ao); this is gbnl{gmnﬁ,_,;gn,nw
TABLE 14 /122
Designation of the working Assignment in internal memory
block P
Beginning End
A 0006 0057
B 0060 0346
C G060 0377
D 0400 0540
E 0541 0611
F 0612 1027
G 1030 - 1121
H 1122 1171
I 0200 0314
J 0315 0343
K 0343 ) 0433
FLOW DIAGRAM

A

B

C

D Block for
to Formul

E Block for

¥ Block for
¥ormulas

G Bloeck for

Block for
Block for
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Overall Flow Diagram

Control program block.
Block for processing initial and numerical data.

Standard program block.

computing auxiliary points on confocal ellipse according
a (L.

computing scalar products according to Formula (2).

computing coefficients of orthonormalization according to
(31) and (32).

computing orthonormalized functions according to Formula (4).
checking accuracy of orthonormalization.

computing Fourier coefficients according to Formula (5).



L -

SN BN

Block for computing coefficients Ci according to Formula (6}.

Block for finding unknown function outside ellipse according to
Formula (7).

Control Program Block

Record first part of basic program on zero magnetic drum.
Record second part of basic program on zero magnetic drum.
Read in initial data input card.

Read in initial data.

Read out first part of basic program from zero magnetic drum.

Read out second part of basic program from zero magnetic drum.

(5]

Block for Processing Initial and Numerical Data /12

Standard program for converting array of numbers from decimal nota-
tion system to binary.

Transfer b and b — b in cells 0051 and 0043.

Record program for computing boundary function on zero magnetic
drum.

Transfer numerical data, i. e., go to B 1 and record on zero magnetic
drum.

Go to A 5.

Standard Program Block

Standard program for computing sine and cosine.
Standard program for computing natural logarithm.

Standard program for converting numbers from binary notation system
to decimal with floating point.

Standard program for computing specified integral by Simpson's
method with automatic calling sequence.

Standard program for square root extraction.
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Block for Computing Auxiliary Points on Confocal Ellipse

Compute'z and b and transfer in cells 0050 and 0052.
Clear counter for 1i.
Convert from degree units to radians.

Readdress 1.

Check if all degree units have been converted into radians; if yes

go to D 6; if no go to D 3.
Clear counter for i.

Transfer argument in cell 0O001.

Go to C 1.
Compute xil), (1)
Transfer xil), (l) in constant cells for storage.

Clear counter for 3.
Transfer argument to cell 0001.

Go to C 3.
@ (@)

s Print out J—xl > Xy

Readdress j.

Check if both x
go to D 1.

(1) (D
l b4

Readdress 1.
Retrieve j.

(1) (1)

Check if all X7, %, have been computed; if yes go to
to D 7.

Block for Computing Scalar Products

Transfer 1 - 1 - A for n.
ransfer 1 - 1 - A for i.
Transfer 1 - 1 - A for j.
Readdress for n.

Go to C 4.

Clear output for computation by integral formula.

e have been printed; if yes go to D 17; if no

E 1; if no go
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< H O&=H = #H = o @ & = o toF = = =5 @=® = t1 o

Fxf
o

Lo B 5 B I o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26

~N oy U

Transfer x in working cells.

Go to C 1.

il)’ Xél)
Compute (%, —x{M)24 (x,—x{)2

Transfer contents of 0001 to working cell.

Transfer argument 000L.

Go to C 2.

Compute o,

Transfer result for storage.

Readdress for obtaining x{, x{).

Retrieve argument for using standard program C 4.

Go to E 8.

Output for computing under integral formula.
Multiply ¢;¢,.

Qutput for standard program C 4.

Transfer result of integral computation for storage.

Readdress for j.

Check if all j have been computed; if yes go to E 3; if no go to C 4.

Readdress for i.

Check if all i have been computed; if yes go to E 25; if no go to
E 3.

Go to F 1.

Block for Computing Coefficients of Orthonormalization

Transfer (g,,¢,) to cell 0001.

Refer to C 5.
1

V' (#1,91)
Transfer constants (00 0002 000 0000) to k-counter.

Compute A,,;=

Retrieve variable commands and set up constants for shaping.
Clear counter for j.

Shape commands for computing product Ak—j i(wk’wa‘
5
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(=5 I B b b

55 ]

e T B s B N« B £

F 24
F 25

26

28

Compute product . . (0 w),
P p Ak~3,1( r©))
Compute Formula (34).

Check if all terms of Formula (34) have been computed; if yes go to
F 11, if no go to F 14.

Transfer value . t .
ransfer u ak,k-] to storage

Readdress variable commands and constants.

Check if all oy k=i have been computed; if yes go to F 15; if no go
to F 5. ?

Set up shaping constants for computing next term and go to F 7.
Set up constants for shaping.
Clear counter for j.

Shape commands for computing product ak,k—i’ Ak—i,j'

Compute product ak,k—i’ Ak—i,j'

Compute Formula (35).

Check if all terms B, . have been computed; if yes go to F 21; if no
k,j
go to F 24,

1 Transfer values B, ., to storage.

k,j
Readdress variable commands and constants.

Check if all Ak i have been computed; if yes go to F 25; if no go to
¥ 17, ?

Set up shaping constants for computing next term and go to F 17.
Set up constants for shaping.

Shape commands for computing the formula

k—1
Z By, p-; J wi—; ds,. (36)
j=0 s

Compute product

By, by J- wi_; ds,,.

S

Compute Formula (36).

S~
[=)
N
(%]

|



29

F 30
F 31

32

F 33
F 34

IS L B

35
36
37
38
39
40
41
42
43
44

45

46

Check if all terms of Formula (3 ) have been computed; if yes go to

F 31; if no go to F 30.

Readdress variable commands for computing next term and go to F 27.

Shape commands for computation using the formula

k—2 k—1 i
2 Z By g ZBmc f Wy ; 0 dSy.
=0 i=j+1 s

Compute product

-~

By, b Brs i J wy_; o, dsy.
1

Compute Formula (3 ).

Check if all terms of Formula (3 ) have been computed; if yes go to

F 36; if no go to F 35.

Readdress variable commands for computing next term and go to F 3Z.

Compute radicand.

Refer to C 5.

Shape commands for computing Formula (1).

Compute Formula (1).

Set up constants for shaping.

Shape commands for computing Formula (2).

Transfer constants (00 0001 OOO 000) in i-counters.

Compute nondiagonal coefficient of given row by Formula (2).

(3

/126

Check if all nondiagonal coefficients of given row have been computed;

if yes go to F 46; if no go to F 45,

Readdress commands for computing next nondiagonal coefficient and go

to F 43.

Check if all coefficients Ak . have been computed; if yes go to G 1;

if no go to F 5.

Block for Computing Orthonormalized Functions
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G [P IS B S
Lt

[

[}

o d

W0 o~ Oy W b R

RS S SR

By b

Lo

10

H 11

12

H 13
H 14

1

Transfer some constants to working cells and clear counter for 1.
Retrieve some commands and clear counter for k..
Compute orthonormalized functions.

Check if all orthonormalized functions have been computed for k; if
ves go to G 5; if no go to G 2.

Copy orthonormalized functions for k from operating memory on first
magnetic drum.

Readdress some commands for i.

Check if all orthonmormalized functions for k have been computed; if
yes go to H 1; if no go to G 2.

Block for Checking Accuracy of Orthonormalization

Transfer some commands in :working cells.

Clear counter for 1i.

Transfer variable command to working cell.

Clear counter for k.

Read out orthonormalized coefficients for k from first magnetic drum.
Retrieve variable command.

Read out orthonormalized coefficients from first magnetic drum.

Clear counter for j.
250 7

Compute Z Pnj Pipy i=1, 2,..., 24 k=12 ..., 1
i=1

Readdress for j.
Check if cycle for j is completed; if yes go to 10; if not go to 7. /127

Check accuracy of orthonormalization; has accuracy been reached; if
yes go to 7; if no go to 1I.

Print out terms that have not reached the accuracy.

Check if the cycle for k is completed; if yes go to 15; if mo go to
7.

Block for Computing Fourier Coefficients from Formula (5)

Read out program for computing boundary function f(o) from zero
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10
11

12

13

14
15
16
17
18
19
20

21

22

magnetic drum.

Transfer argument in cell 000l and go to C 1.
Check if all f(ocj), j=11, ..., 250, a;=(j—1)-
puted; if yes go to I 4; if no go to I 2.

2n
—_— have been

250

Read out orthonormalized coefficients from drum.
Clear counter for k.

Compute Fourier coefficients

250

B,= Z fle)dey, k=12, .. 24
=1

Check if cycle for k is completed; if yes go to J 1; if mno go to
I 6.

Clear counter for i.
Clear working cell for variable command.
Clear counter for k.

Clear working cell for storage of sum.

24
Compute C;= Y. B, A, ;-
k=i

Check if cycle for k is finished; if yes go to I 14, if no go to
I 12.

Transfer Ci for storage; go to C 3 and print out.

Readdress variable command of retrieval and readdress for i.
Check if cycle for i is finished; if yes go to I 17; if mno go to
Transfer designated points from magnetic drum.

Clear counter for n.

Transfer designated points in working cells.

Clear counter for i.

24
Has u(E, 9,)= 2'1 C,w;, been computed?
==

Check if cycle for i is finished; if yes go to I 23; if no go to
I 2.

com—

I 9.



23 Print out u(f,, n,). 1128

24 Readdress for n.
25 Retrieve some commands for i.

26 Check if cycle for n is finished; if yes go to I 27; if no go to
I 19.

I 27 Check if all ZNmax designated points have been computed; if yes go to
I 27; if no go to I 19.
I 28 Retrieve some commands and go to readdress I 17.

I 29 Check if all designated points have been called; if yes go to T 30;
if no go to I 18.

I 30 Stop.

Control Example 1

Let us look at the following external Dirichlet boundary problem for the

ellipse s:

x,=cos¢, x,=08sing
under the boundary condition

zﬂﬂ:——ﬁ—— O<a<2n
B 2 2 >
. oxixl

and seek the harmonic function outside the ellipse s.
In cell 0623 we transfer the value of the semi-minor axis b = 0.8. 1In

cell 0622 we read—-in the number b - b = 0.2. The machine automatically selects

the following values of the semiaxes for the auxiliary ellipse st
x{=0,75 cos &, #D=0,6sine,, i=1,2,..24.

Tn cell 0624 according to the third address, N is the length of the
program for computing the boundary function f(a). 0625 according to the
second address is the number of designated points — n (i. e. E,m5 &% e

E.. 7, in the octal notation system. In our case
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the designated points in the region Ge outside the ellipse s.

N=40] =50| .
10 8

The approximate values for solution to this problem must be computed at

the designated points are read in from cell 0623.

The precise solution to the problem has the form

-

“G=mrr G wed.

Below we derive the initial and numerical data.

The values of

Address Commands Comments
1 31 | 0100 0010 {Initial data input card.
2 31 0622 | 0014
3 30 0100 0010
4 31 0622 | 0013
5 35 0014 | 0013 | 0010
6 33 0022
7 34 0001
0010 77 0060
I 0622 | 0002 | 0622
2 34 0134
3 00
4 00
0622 | -+ 0 -+ | 2000{0000 |b -~ b is difference between semiaxes.
31 4+ 0 -+ | 8000 | 0000 b is' semi-minor axis of basic ellipse.
4 0005 in is length of program for computing boundary func.
5 0050 The n e i i i E i
2 03 | 0020 | 0020 | 0ot | st:ﬁb r of designated points in octal notation
7 03 | 0021 | 0021 | o002 | SY .
0630 (1] 0001 | 0002 | 0001
I} 04 0020 | 0001 | 0001«
2 34 0272

/129
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NUMERICAL DATA

Address Numbers Address Numbers
0623 + 0 + 8000 0660 + 1 + 4600
4 -+ 1 - 1000 1 - 0 - 9000
5 + 0 -+ 8000 2 + 1 -+ 5600
6 + 1 -+ 1200 3 + 1 -+ 1200
7 -+ 0 ) * 8000 4 -+ 1 -+ 1200
0630 - 1 o+ 1400 5 -+ I, - 1200
1 + |- 0 -+ 8000 6 + 1 + 2000
2 -+ I -+ 1600 7 + 1 -+ 1200
3 +- 0 -+ 8000 0670 + 1 —+ 2800
4 1|+ 1800 1 + 1 j: - 1200
5 + 0 -+ 8000 2 -+ 1 3600
6 + 1 + 2000 3 + 1 + 1200
7 + 1 0 + 8000 4 + 1 - 4400
0640 + 1 -+ 2400 5 + 1 C+ 1200
! + 0 -+ 8000 6 -+ 1 -+ 5200
2 -+ 1 + 2600 7 + 1 -+ 1200
3 - 0 +- 9000 0700 + 1 -~ 6000
4 -+ I + 1100 1 + 1 - 1200
5 -+ ] + 9000 2 + 1 -+ 6800
6 -+ 1 - 1600 3 -+ 1 4~ 2000
7 -+ ] + 9000 4 + 1 -+ 1300
0650 + Lo 2100 5 + 1 - 2000
i o 0 -+ 9000 6 -+ 1 e 2300
2 + 1 + 2600 7 i 1 -+ 2000
3 - 0 -+ 9000 0710 1 -+ 3300
4 ot 1 + 3100 1 + 1 2000
2 -+ 0 9000 2 + 1 4300
6 -+ 1 3600 3 -+ 1 -+ 2000
7 + 0 9000 4 -+ 1 E 5300
5 o+ 1 -+ 2000 0730 + 1 + 3600
6 + 1 + 6300 1 -t 1 -+ 5000
7 -4~ 1 + 2000 2 -4 1 -+ 4700
0720 -+ 1 -+ 7300 3 + 1 -+ 5000
! + 1 -+ 2000 4 + 1 -+ 5800
2 -+ 1 . 8300 5 -+ 1 + 5000
3 4+ 1 -+ 5000 6 +- 1 -+ 6900
4 + 11 -+ 1400 7 + 1 + 5000
5 -+ 1 -+ 5000 0740 -+ 1 + 8000
6 -+ 1 -+ 2500 1 j: 1 =+ 5000
7 -+ 1 + 5000 2 1 + 9100

The printed results of the control example are shown in Tables 15 and

16.

Table 15 gives the coordinates of the auxiliary points on the confocal

ellipse in the following sequence:

17z

x_l(l), x2“);...;
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and the value of the Fourier coefficients Cl’ C2’ ey C24.

Table 16 gives the coordinates of the designated points

solutions

u(Eiv "h),

3
+

——u(E) ] i=12, ... 40.

=

(El’ 71:!)9

corresponding to them obtained on the machine, and the error

and the

The operating time of the machine for this example is 45 minutes. The

~distribution of designated points is shown on Figure 4.

TABLE 15

i x{? x ¢

1 —0,10971885- 10~ 0, 60000000 —0, 22206542+ 10~
2 0,32915656 - 10~7 —0,60000000 0,20515213-10-%
3 0.75000000 000000000 —0,76608258- 10~
4 ~0, 75000000 —0,17555016-10-1 0,76589811.10~
5 | —0.53033006 —0,42426408 - 0,10152,26.

6 0.53033008 0,42426407 —0,10152297

7 0.53033011 —0,42426404 —0,10152337

8 —0,53033009 0,42426406 0,10152883

9 0.64951907 —0,29999997 —0,90643412-10-1
10 —0,64951906 0,29999998 0.90531226- 10~
1 —0.37500001 0,51961523 0,99701809- 10~
12 0,37500003 —0,51961522 —0,99703552 10—
13 037499999 0,51961524 —0,99706374- 10~
14 —0,37499997 0,51961525 0,99706651 - 10~
15 064951905 ~0,30000000 —0,90641500 10~
16 —0,64951904 ~-0,30000001 0,90637014 10~
17 0.19411427 0,57955549 0,66432247-10-1
18 —0,19411425 —0,57955550 0,66432366 10~
19 —0,19411429 0,57955549 0.66436770 10~
20 0.19411431 0.57955549 - —0,66436330 10~*
21 | 0.72444437 . 0,15529142 —0,80437784- 10~
22 —0,72444436 —~0,15529144 0,80449864 - 10~
23 —0,72444437 0,15529141 0,80453934 - 10~
2 0.72444438 —0,15529139 —0,80435528- 10—+
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TABLE 16

n €, M () €n

i | 0,80000000 0, 10000000 0,48780491 —0,4-10-7

2 | 0.80000000 0. 12000000 0.38461530 —0.1.10-7

31 0.80000000 0, 13999999 - 101 0.30769231 —0.1.10-1

4 | 0.80000000 0, 16000000+ 101 0.25000001 —0.1.10-7

5 | 0.80000000 0,17999999 10! 0,20618559 —0.3-10-1

6 | 0.80000000 0.20000000- 10 0,17241383 —0.4-10-7

7 | 0.80000000 0.24000000- 10t 0°12500006 —0.6.10-7

& | 0.80000000 0.25999999 - 101 0,10810818 —0,8 10-7

9 | 0.90000000 0,11000000 101 0,44554459 —0,4 10-1
10 | 0.90000000 0.16000000- 10t 0.26706233 —0.2-10-7
11 | 0.90000000 0,20999999 - 10t 0.17241384 —0.5-10-1
12 | 0.90000000 0,25999999 - 10 0.11839043 —0.8.10~1
13 | 0.90000000 0,30999999 - 10 0.86372452-10-1 | —0.02.10~*
14 | 0.90000000 0.35999999 - 10t 0.65359581 10~ | —0.104 10-%
15 | 0.90000000 0.45999999- 10t 0.40965076-10-1 | —0.124.10-5
16 | 0.90000000 0,55999999 10t 0.27976515-10-1 | —0.14 10-8
17 | 0.12000000-10 0.12000000- 10 0.41666670 —0.4 10-7
18 | 0°12000000-10* 0.20000000- 101 0,22058829 —0.6-10-
19 | 0.12000000- 10t 0.27999999 10 0.19931042 —018.10-7
20 | 0.12000000-10* 035999999 101 0.83332438.10-1 | —0.105.10-8
21 | 0.12000000- 10t 0.44000000- 10t 0.57602429-10-1 | —0.1(2-10-®
22 | 0.12000000 10* 0.51999999- 10t 0,42134966-10~1 | —0.135-10-8
23 | 0.12000000- 10t 0.60000000- 101 0,32051428-10-1 | —0.146 10~°
24 | 0.12000000 10 068000000 10 0,25167941-10- | —0.156 10-¢
25 | 0.20000000-10! 0.12999999- 101 035149391 —0.7 10-7
26 | 0.20000000 10* 022999999 - 10t 0,21528533 —0,8 10-7
27 | 0.20000000-10t 0.32999999.. 10t 0.13431844 —0,11-10-
28 | 0.20000000 10! 0°43000000- 107 0.88928536-10~1 | —0,124.10-8
29 | 0.20000000- 10t 053000000 10* 0.62:24850-10-1 | —0139.10~*
30 | 0.20000000- 10t 0.,63000000- 10! 0,45777217 10-1 | —0%152 10-°
31 | 0.20006000- 10! 0.73000000- 10 0.34910269.10-1 | —0.162-10-9
32 | 020000000 10t 0,83000000- 10t 0,27438778-10-1 | —0.172 10-¢
33 | 0.50000000- 10 0,13999999 - 10t 0. 18546007 —0,13 10-¢
34 | 0.50000000. 101 0.25000000- 10t 016000013 —0.13.10-¢
35 | 0.50000000- 10! 0,35999999 - 101 0,13171774 —0.15-10-8
36 | 0.50000000- 101 0.46999999 - 101 0.10617981 —0.16-10-¢
37 | 0.50000000- 10 0.55000000- 10 0,85266193-10- | —0,163-10-¢
38 | 0.50000000-10t 0.69000000 - 101 10,68861210-10- | —05172.10-8
39 | 0.50000000.10 080000000 101 0,56179955-10-1 | —0,18-10-%
40 | 0,50000000-10 0,91000000- 10* 0,46378075-10~ | —0_188 10-¢

Control Example 2

Let us look at the external Dirichlet boundary problem for the-ellipse

X3=C08 9, X,=0,5sin¢.

Under the boundary condition

u(e) = — 261%

= [mé’ I=x=2n
1 2



we seek the harmonic function outside the ellipse s.

In cell 0623, we transfer the value for the semi-minor axis b =
cell 0622 we read in the number b - b =

values of the semiaxes for the auxiliary ellipse S

*=08cose;, x"=04sine, i=12,..,

24,

In this case, the number of designated points is (=%3| =5,

The exact solution to this problem has the form

u(gm)=

[E”

(c.n) €G,.

2]2

Below we give the initial and numerical data.

0.5.

In

0.1. The machine selects the following

Address Command Address Command
1] 30 | 0100 0014 0622 -+ 0 - 1000 0000 -
2 3l 0622 | 0014 3 -+ 0 -i- | 5000 0000
3 30 | 0100 0014 4 0011
4 31 0622 | 0013 5 0053
5 35 1 0014 | 0013 | 0010 6 03 | 0020 | 0020 0001
6 33 | 0022 7 03 | 0021 ; 0021 0002
7 34 0001 0630 01 0001 | 0002 0001
0010 77 0060 1 03 | 000} { 0001 0001
1 0622 | 0002 | 0622 2 03 | 0020 | 0021 0002
2 34 0134 3 03 | 0636 | 0002 0002
3 00 4 04 | 0002 | 0001 0001
4 00 5 34 0272
6 02 | 3000
NUMERICAL DATA
Address Command I Address Command
0000 | - 0 4- | 1000 0040 -+~ 0 -+ 5000
1l 4+ | o | + |8s00 1) + | 1 4+ | 4000
2 4+ | 0 | 4 | 1000 2 + | 0o | 4+ | 5000
30 + 0 | 4 | 9000 3 | + 1 + 4500
41 4+ -+ 1000 4 + 0 - 7000
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NUMERICAL DATA (con't)

Address Numbers Address Numbers
51 -+ 0 F | 9500 5 - 0 T 8000
6 -t 0 -+ 1000 6 -+ 0 Coe 7000
71 4 | 1 | + {1000 7 4+ | 0 | + | 9000
0010 | 4+ | 0 4+ | 1000 0050 + o [ + | 7o00
b4 1 -+ | 1050 1 + 1 + 1500
2 -+ 0 -+ 1000 2 -+ 0 -+ .7000
R 1 + | 1100 3 + 1 1700
40 4 0 -+ | 4000 4 +1 0 . 7000
51 - I <+ | 1200 5 I 1 + 1900
6 -+ 0 -+ 4000 6 4= 0 -+ 7000
7 -~ 1 .- 1400 7 - 1 - 2100
0020 - 0 -} 4000 0060 e 1 -+ 1000
[ 1 + | 1600 I + 0 | -+ | 8000
20 4 0 4+ | 4000 2 + | 1 + 1000
C3 I W B + {1800 3 + 1 | + 1100
44 4 0 + | 4000 |: 4 -+ 1 - 1000
51 1 + | 2000 | 5 + 1|+ 1300
6 - 0 -+ 4000 | - 6 + 1 -+ 1000
7 4+ 1 -+ | 2200 i 7 -+ 1 -+ 2300
0030 | -~ | O | + {5000/ 0070 + 1 + 1000
I 4 0 - 18500 | . 1 -+ 1 -+~ 2400
21 <4 | 0 | 4+ |5000 2 + 1 :t 1000
31+ 1 4+ | 2500 3 -+ 1 2600
41 4+ | o | = |5000 4 + 1 + 1500
51 4+ 1 + | 3000 5 + | 0 | 4+ | 8000
6 + 0 | 4 |5000 6 4+ | 1 4 | 1500
71 4 1 + | 3500 7 + 1 1 4 | 3000
0100 -4 1 -} 1500 ‘ 3 - 0 -+ 9000
i -t ! -+ 3700 i 4 - ] -}~ 2000
2 | i 4 | 1500 5 -+ 1 -+ 1000
3 -+ 1 - 4400 6 -i- { -}- 200
4 e . ~- 1500 7 + 1 -}~ 2000
5 -+ -1 -+ 5100 0120 - i ~}~ 2000
6 | + 1 + | 1500 i + 1 + 3000
7+ 1 -+ | 5800 2 + ] + 2000
ol |+ i 4 | 2000 3 + 1 - 400
1 - 0 -+ | 8000 4 -+ 1 + 2000
2§ + | 1 | + |2000 5 + | 1t | 4+ | 5000
TABLE 17

1) A 2
I —0,11703344 - 10~ 0,40000000 0,96853857-10-¢
2 -0,35110033 10~? —0,40000000 —0,16354052- 10-5
3 ~0,80000000 0,0000000 —0,29542828 - 10-¢
4 ——0'80000000 —0,11703344.10-7 —0,20274971-10-%

5 —0,56568540 - 0,28284272 0,17703348

6 —0,56568542 0,282849271 0,1770:3663

7 0,56568545 —0,28284269 —0,17703063

—0, 56568543 0,28284270 —0,17702967
0.65282034 —0,19999998 —0,38209288- 10~
—0,69282033 0,19999999 —0, 34296252 10-1

- 0,40000001 0,34641015 —0,65954406

0,40000003 —0,34641015 —0,65954315
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TABLE 17 (con't)
i x{ 1) X(l) Cy
i 2 1

13 030099999 0.34641016 0.65054371

14 —0.39699097 —0.34641017 0. 65054367

15 069282032 0.20000000 0,28276880-10~1
16 —0.69282031 —0,20000001 0,38283523- 10- ¥
18 0.20705522 0.38637033 0.15523954 - 101
18 —0.20705520 —0.38637033 015523975~ 101
19 —0.20705524 0.38637032 —0,15523971- 101
20 0.20705527 —0.38637032 —0, 15523962, 10t
21 0.77274066 0.10352761 0,97296802 - 10~
32 — 0.17274065 —0,10352763 0797203732-10-?
23 0.77274066 0. 10352760 096886752 10-2
2% 077274067 —0.,10352759 —0.96832523.10-7

TABLE 18

i & Ni u(E n) €

1 0, 10000000 0.85000000 —0,3158475: .10~
2 0, 10000000 0.90000000 __0'2é733§83 3'é8{§;?139»
3 0410000000 0.95000000 —0.22780316 038224 10-2
4 05 10000000 0,10000000.100 | —0, 19580721 025200~ 10~
5 0, 10000000 0,10499999 10t | —0.16950372 0,16182 10-3
6 010000000 0.11000000-101 | - — 0714768000 0.12072-10-3
7 0540000000 0.12000000 10t | —0,37490475 0,9525- 10~ *
8 0,40000000 0.13999999-10! | —0.2491474] 05159 10—+
9 0.40000000 0.16000000-10t | —0.17298143 022895 10-4
;o 040000000 0,17999999- 10 | —0, 12455015 0.1732.10-*
11 0.40000000 0,20000000.101 | —0.92444604-10-1 | 0.110i7-10-3
12 | 0,40000000 0,22000000. 10t | —0,70392605 10-1 305. 10~
13| 0.50000000 085000000 -.8'58332323 10 __8‘569?6[2 ’
14 | 0.50000000 0,25000000.10t | —0.59166383-10-1 0.5214-10~4
15 | 0,50000000 0,30000000 10t | —0.35059446-10-1 | 0 9643.10~s
16 | 0750000000 0,35000000 101 | —0.22398476+10-1 | 0 1524.10-4
17 | 0.50000000 0,40000000 101 | —0.15146966-10-1 |  0°9G3.10-5
18 0.,50000000 0,45000000-10t | —0.10707261+10~ | 0 650.10-5
19 | 0.70000000 080000000 —0.87714309 | —O0.1881.10-8
20 | 0,70000000 0.90000000 —0,74555695 0.518-10-
21 0.70000000 0.15000000-101 | —0.27968637 023018104
22 | 0,70000000 ©0,17000000 10t | —0°20830399 02204 [0—1
23 | 0.70000000 0,19000000- 10 | —0.15822332 001572, 10~
24 | 0,70000000 0.20999999- 10t | —0.12243752 0,146 108
25 0.10000000.10t | 0.80000000 —0.59488382 0°17-10- 8
26| 0.10000000-10 | 0.10000000-10 | —0.45042692 001430 10~
27 0,10000000 10t | 0.12999999-10t | —0°35920066 0.1891-10-
28 0,10000000-101 | 0,92999999-10' | —0.11625829 02873 10~
29 | 0,10000000-10t | 0.24000000 10t | —0.10503055 0.778-10-5
30 | 0,10000000-10* | 0,25996999 101 | —0.86347263.10-1 | 0.6228.10-s
3l 0.15000000 10 | 0.80000000 —0.,28734960 0.328-10-5
32 | 0,15000000-10t | 0.30000000-10t | —0.71106808-10-1 |  0.4303-10~
gg 0,15000000-10* | 0737000000- 102 —0,43683835 10-1 |  0.2573.10-¢
: 0,15000000-10" | 0,44000000.101 | —0,98264387-10-1 |  0.1615.10-5
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TABLE 18 (con't)

The printed results of the control example are shown on Tables 17 and 18.

Table 17 gives the coordinates of the auxiliary points on the confocal

i £, n.
i i u(Eini) €;
75 0, 15000000 10t | _0,50999999. 101 ~0,19156800-10-1 0,1065-10-5
36 0715000000 10" | 0,58000000-101 —0,13507610-10-1 0,740-10~¢
37 0.20000000-10! | 0,800C0C00 —0,14862975 0,283-10-3
38 0,920000000 10 | 0,90000000 -0, 15559766 0%,332.10-%
39 0,20000000-101 | 0, 1000000010t —0.15999619 0,381-10-5
40 0,20000000- 10 | 0,20000000. 10t ~-0,12499492 0,578.10-%
41 0,20000000 101 | 0.30000000 10 —0,71002050-10-1 0,3867-10-°
49 0,20000000-10t | 0.40000000- 10t ~—0.39997789 - 10~1 0,2211-10-3
43 0,20000000-10t | 0,50000000. 10t —0,23779920- 10~ 0,1292-10-5

ellipse and the value of the Fourier coefficients.

Table 18 gives the coordinates of the designated points (§%;) and the

solutions corresponding to them u(§;,v,), obtained on the machine and error

5f=[‘“_‘——7"
[&*+7%?

—2%n

u(g,n)], i=1,2,...,43.

The machine time for this example is 50 minutes.

The distribution of designated points is shown on Figure 5.

OPERATIONAL CODE FOR THE METHOD OF GENERALIZED

FOURIER SERIES

Address Command Address Command

0000 00 0010 .30 0400 1114
i 30 0100 1664 1 71 0050
2 31 0014 | 0050 2 35 0044 | 0050 0015
3 35 0005 | 0050 | 0006 3 33 0002
4 33 0001 4 34 0006
5 67 0077 { 2357 | 0426 5 30 1400 | 1115 0214
6 30 1400 1114 6 31 1464 0047
7 31 0347 .| 0044 7 30 0400 | 1115 0214
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‘Address Command 'Address Command
0020 71 0050 0120 41 0004 | 0132 0004
1 35 0047 | 0050 | 0024 1 36 0125 | 0004 0072
2 33 | 0003 9 33 0002 | 0003
3 34 0015 3 35 0074
4 30 0100 0013 4 0001
5 31 0001 5 3777
6 34 0001 6 37 3777
7 30 | 0400 1114 7 04 | 1200
0030 31 0060 | 0010 0130 3700
i 35 0044 | 0010 | 0505 0 1100
D) 33 | 0004 9 2040
3 34 0027 3 34 1463 | 0631 2315
4 30 | 0400 | 1115 | 0214 4 14 0350 | 0351
5 31 0220 | 0010 5 0622 0043
6 35 0047 | 0010 | 0256 6 0623 0051
7 33 0005 7 0624 0042
0040 34 0034 0140 62 0042 | 0124 0352
| 00 1 22 1.0323 | 0352 0143
2 00 2 22 0324 | 0352 0145
3 00 3 00
4 00 4 31 0626 | 0046
5 00 5 00
6 00 6 71 0626 0010
7 00 7 35 0046 | 0010 0152
0050 00 0150 33 0006
1 00 1 34 0143
2 00 2 0145 0054
3 00 3 22 0321 | 0042 0352
4 00 4 62 10327 | 0352 | 0352
5 00 5 17 | 0352 | 0124 | 0353
6 00 6 35 0353 . 0160
7 00 7 62 | 0352 | 0124 | 0332
0060 34 0002 | 006) 0160 0352 | - 0055
1 26 0002 | 0026 | 0063 1 26 0352 | 0013 0353
2 22 | 0124 | 0063 | 0063 p) 22 | 0353 | 0322 | 0057
3 33 0002 | 0001 3 17 {06925 { 0325 | 0056
4 17 0125 | 0001 | 0004 4 17 0625 | 0125 0354
5 20 | 0001 | 0004 | 0076 5 - 75 | 0354 0237
6 22 0124 | 0076 | 0076 6 17 0625 | 0326 0354
7 22 0125 | 0004 | 000} 7 22 0354 | 0354 0354
0070 22 0126 | 0001 | 0122 0170 26 0354 | 0113 0354
1. 22 0002 | 0124 | 0063 1 36 0354 | 0352 0232
2 76 0001 | 0133 | 0117 2 62 0354 | 0352 0354
3 33 0002 3 0124 0351
4 17 0126 | 0076 | 0001 4 62 0352 | 0124 0355
5 35 0001 | 0063 5 22 0330 | 0355 0177
6 33 0002 | 0002 6 0177 0201
7 22 | 0076 | 0126 | 0076 7 00
0100 22 0124 | 0122 | 0122 0200 31 0623 0010
i 45 0001 | 0002 1 00
2 26 | 0002 | 0106 | 0004 2 3 0623 | 0011
3 03 | 0127 | o002 | 00c2 3 35 | 0010 | 0011 | 0206
4 17 | 0130 | ooo1 | 6003 4 33 | 0007
5 76 0131 | 0003 | 0673 5 34 0177
6 41 0132 | 0004 | 0004 6 22 0331 | 0353 0210
7 (431 0003 | 0002 | 0002 7 77 0060
0110 66 | 0001 | 0004 | ODOI 0210 00
1 76 0001 | 0103 1 00
2 25 0002 | 0004 | 0001 2 22 0332 | 0355 0215
3 36 0132 | 0004 | 0121 3 22 0334 | 0352 0217
4 04 0001 | 0127 | 0001 4 22 0335 | 0352 0220
5 42 0004 | 0132 | 0004 5 00
6 35 0113 6 31 0623 0010
7 03 0001 | 0127 | 0001 7. 00
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“Address Command Address Command

(220 00 0320 34 0311
{ 31 0623 { 0010 1 0626
2 35 1 0010 | 0333 | 0225 2 0001
3 33 | 0010 3 30 | 1400 | 1332
4 34 02156 4 30 0400 | 1332
5 35 0350 | 0351 | 0027 5 3777
5 22 0335 | 0057 | 0335 6 3777
7 22 0045 | 0124 | 0045 7 3666

0230 00 0330 30 0100
i 34 0171 1 0623 0623
2 0351 2 30 1403
3 0354 0352 3 77 3777 | 3777 3777
4 26 0354 | 0013 | 0353 4 20 0010 | 0333 0623
5 0352 0053 5 30 I 1400 | 2462
6 34 0174 6 0003
7 0336 0352 7 01 1000

0240 26 | 0336 | 0013 | 0353 § 0340 0002
] 34 0211 | 0174 1 34 0265
2 0352 2 34 0270
3 22 0216 | 0344 | 0216 3 34 0276
4 22 0334 | 0336 [ 0334 4 0003
5 0216 0221 5 0003 0625
G .1 0625 0001 6 0005 0627
7 25 000} | 0077 | 0353 7 04 0CO1 | 0126 0004

0250 02 0337 | 0353 | 0337 0350 14 06004 | 0003 0004
1 0623 0002 1 41 | 0004 { 0130 | 0004
2 0002 0003 2 26 0004 | 0046 0002
3 0341 0311 3 35 | 0002 0066
4 0624 0004 4 02 0127 1 0003 0003
5 0004 0005 5 26 0004 | 0036 0005
§ 03 0005 | 0005 | 0006 6 03 0003 | 0121 0004
7 03 0051 | 0051 | 0007 7 03 0004 | 0004 0003

0260 04 | 0006 | 0007 | 0006 || 0360 01 | 0003|0122 0002
i 03 0003 | 0003 | 0007 1 03 0002 | 0002 0002
2 01 0006 | 0007 | 0006 2 01 0062 | 0003 0003
3 36 0006 | 0337 | 0303 3 01 0003 | 0123 | 0003
4 00 4 01 0002 | 0124 0002
5 01 0005 | 0001 | 0005 5 03 0002 | 0003 0002 .
) 34 0264 | 0256 6 02 0125 { 0002 0003
7 0342 0311 7 04 | 0004 | 0003 | 0002

0270 .02 0004 | 0001 | Op04 0370 25 0002 1 0077 0003
i 34 0264 | 0255 1 03 | 6003 | 0003 | 0004
2 00 2 01 0127 | 0004 0003
3 01 0003 | 0001 | 0003 3 04 0002 | 0003 0002
4 34 0264 | 0253 4 02 0127 | 0004 0004
5 0343 0272 - 5 04 0004 | 0003 0003
6 02 0002 | 0001 | 0002 6 22 0117 | 0005 0004
7 34 0264 | 0252 7 76 | 004 | 0120 | o114

(300 0351 0400 0002 0004
i 0352 0053 1 0003 0002
2 34 0313 2 0004 0003
3 0003 0626 3 15 0002 | 0005 0002
4 0005 0627 4 22 0005 | 0127 0004
5 22 | 0303 | 0340 | 0303 5 15 | 0003 | 0004 | = 0003
) 22 0304 | 0340 | 0304 6 37 0400
7 29 |1 0352 | 0340 | 0352 7 37 | 0600 |

0310 35 0352 | 0055 | 0312 0410 75 1552 | 3107 | 0735
1 00 1 75 3117 { 0500 1322
2 0124 0351 2 74 3210 | 3556 1027
3 62 0352 | 0124 | 0355 3 1322 | 0647 1264
4 34 0330 | 0212 4 75 1621 | 2273 2707
5 ) 0352 5 1444 | 0773 1242
8 0346 0303 6 01 1000
7 0347 0304 7 1000
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Address Command Address Command
‘0420 36 | 0001 | 0162 | 0153 0520 - 00
1 06 | 0001 | 0001 | 0002 1 34 0231 0223
2 01 0002 | 0163 | 0003 2 22 | 0340 | 0327 0240
3 02 | 0002 | 0163 | 0004 3 34 0231 0221
4 04 | 0004 | 0003 [ 0003 4 17 10342 1 0330 | 0342
5 43 | 0003 | 0003 | 0002 5 26 | 0342 | 0126 | 0313
6 43 | 0155 | 0002 | 0004 6 16 | 0321 | 0313 | 0253
7 41 | 0004 { 0156 | 0004 7 16 | 0242 | 0313 | 0313
0430 43 0004 | 0002 | 0004 0530 i6 0322 | 0313 0313
1 41 | 0004 | 0157 | 0004 ] © 22 | 0340 | 0327 | 0340
2 43 0004 | 0002 | 0004 2 16 0340 | 0323 0244
3 01 0004 | 0160 | 0004 3 00
4 03 | 0004 | 0003 | 0002 4 0251 0263
5 07 | 0001 0004 5 0251 0274
6 02 0004 | 0161 | 0004 6 22 0341 | 0331 0341
) 7 03 0004 | 0164 | 0004 7 0334 0001
0440 01 0004 | 0002 | 0002 0540 00
1 35 ‘1 0154 1 0001 0340
2 33 0013. 2 00
3 37 ) 3 02 | 0335 | 0334 | 0342
4 12 1150 | 0200 4 36 | 0336 | 0342 | 0260
5 06 0006 | 1450 | 0074 5 ' 0342 0336
6 02 0252 | 2526 | 3155 6 . 0341 0314
7 01 1777 | 3777 | 3775 7 03 0337 | 0336 0225
0450 1000 0550 01 0334 | 0336 0231
1 41 1000 1 0231 0001
2 1324 | 0236 | 1464 2 00
"3 ) 1305 | 3102 | 3770 3 01 0340 | 0001 0244
4 14 0004 | 0002 4 0001 | - 0340
5 15 0001 | 0001 | 0003 5 06 0336 | 0264 0342
6 76 0211 { 0003 | 0173 6 03 0244 | 0342 0222
-7 03 0003 | 0210 | 0003 7 06 0336 | 0264 0342
0460 76 0003 | 0211 | 0210 0560 01 0334 | 0342 0251
1 65 0067 | 0004 1 0220 0253
2 65 0004 | 0001 | 0004 2 0251 0001
3 76 | 0003 | 0212 | 0201 3 00
4 04 0003 | 0213 | 0003 4 01 0253 | 0001 0253
5 35 0173 5 01 0251 | 0336 0251-
6 26 0002 | €004 | 0002 6 36 | 0251 | 0231 0273
7 03 0003 | 0212 | 0003 7 05 .} 0253 | 0276 0253
0470 14 0003 | 0003 | 0005 0570 01 0244 | 0253 0244
1 22 0002 | 0005 | 0002 1 01 (244 | 0253 0253
2 76 | 0002 | 0214 | 0177 2 04 | 0336 | 0332 | 0342
3 47 0004 | 0004 3 03 0253 | 0342 0253
4 26 0004 | 0006 | 0004 4 06 0336 | 0302 0336
5 55 0004 | 0001 | 0004 ;) 62 0253 | €222 0342
6 22 0004 | 0002 | 0002 6 76 0253 | 0333 0311
7 37 0734 | 3262 | 2000 7 04 0342 | 0253 0342
0500 1. 01 1000 - 0600 0253 0222
1 04 1200 i 76 0225 | 0342 0270
2 04 1177 | 3777 § 3777 2 00
3 0100 3 00
4 34 |- 0341 | €216 4 0231 0334
5 26- ] 0341 | 0026 | 0340 5 05 0336 | 0304 0336
6 14 | 0324 | 0225 | 0314 6 34 0254
7 40 0325 0231 7 0342
0510 16 | 0340 | 0320 | 0222 0610 0220
1 00 i 01 0222
2 17 0342 | 0330 | 0244 2 0251
3 16 0244 | 0225 | 0225 3 0334
4 00 ’ 4 74 0231 0223
5 62 0225 | 0244 | 0225 5 0001
6 22 0225 | 0326 | 0225 6 0001 ’
7 26 ] 0342 | 0013 | 0342 7 3777




Address Command Address Command
0620 0003 || 0720 10 1700
1 Q3 1400 1 05 1700
2 01 | 1000 2 10 | 1510
3 00 3 07 | 1130
4 00 4 10 | 1774
5 00 5 07 1510
[ 00 6 11 | 1072
7 00 7 04 | 1700
9630 00 0730 10 1414
1 00 | 1 10 | 1224
2 25 0040 | 0002 2 11 1262
3 76 0001 | 0346 | 0371 3 0002
4 06 0001 | 0001 | 0005 4 2452 0001
5 41 0005 | 0374 | 0003 5 77 3777 | 3777 3777
6 36 0375 | 0005 { 0351 6 0001
7 42 0003 | 0376 { 0003 7 03 0002 | 3212 2462
0640 17 | 0001 | 0377 {0005 i 0740 73 1467 | 2145 2625
1 0375 0004 1 03 1441 | 0131 0455
2 36 0005 | 0373 | 0355 2 0373
3 0372 0004 3 0031
4 03 0004 | 0003 | 0003 4 2455 2500
5 Ot 0005 | 0003 | 0004 5 3716 2460
6 01 | 0003 | 0004 | 0003 6 3746 2461
7 04 | 0005 | 0003 | 0005 7 0001 | 0001
0650 65 0003 | 0076 | 0003 # 0750 0372
1 01 0003 | 0005 | 0005 i 03 2500 | 1766 2456
2 17 0001 | 0002 | 0003 2 63 1506 | 3342 3530
3 26 0001 § 0101 | 0002 3 2456 2511
4 16 0003 1 0002 | 0002 4 03 2510 1 2510 2442
5 05 0005 | 0002 | 0002 5 03 1311 2442
6 36 0346 | 0001 | 0371 6 1766
7 33 0010 7 2456 2460
0560 37 0760 01 3000
1 1473 | 2600 1 03 2457 2442
2 01 1000 2 1765
3 1410 3 1311
4 1111 | 1040 4 03 2442 2442
5 77 0034 | 1400 5 03 2510 | 2511 2442
6 01 1777 | 3777 | 3777 6 0002
7 0001 0001 7 04 | 0373 | 0002
0670 0001 | 0770 03 2511
i 0030 1 3777
2 0001 2 - | 1766 3665
3 3715 2453 3 30 0410 0372
4 3745 2454 4 02 0051 | 0043 0052
5 0031 5 04 0052 | 0051 0050
8 40 6 2445
7 03 | 1444 | 0773 | 1242 7 04 | 0414 | 0413 | 0414
Q700 72 1217 | 1341 | 1075 {| 1000 22 0510 | 0400 0510
1 54 | 1524 | 2377 | 1607 1 22 | 2445 | 0401 2445
2 06 1624 | 2734 | 0260 2 75 2445 | 0402 0510
3 07 | 1320 3 2445
4 L 1034 4 0414 0001
5 00 5 77 0060
8 10| 1320 6 03 | 0003 | 0050 | 2452
7 10 1604 7 03 0002 | 0052 2453
0710 06 1320 1010 2452 3716
1 11 | 1166 i 2453 3746
2 10 | 1034 2 2446
3 111224 .3 2452 0001
4 10 | 1130 4 77 0165
5 07 1700 5 32 0002
6 11 1130 6 22 0524 | 0403 0524
7 06 1700 7 22 2446 | 0401
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Address Command Address Command
1020 75 | 2446 | 0444 | 0524 ¢ 1120 0467 2451
t 72 1 0470 0646
2 22 0515 | 0403 | 0515 2 0403 2452
3 22 | 0521 | 0401 | 0521 3 0447 2453
4 22 | 0522 | 0401 | 0522 4 22 2450 | 2447 | 2454
5 0445 { | 0524 5 2455
6 22 | 2445 | 0401 | 2445 6 15 2456
7 75 | 2445 | 0402 | 0515 7 16 2451 | 2454 0641
1030 0403 2445 B 1130 00
1 0403 2446 1 01 | 2456 | 2442 | 2456
2 0403 2447 2 22 | 2455 | 0403 | 2455
3 22 | 2445 | 0403 | 2445 3 75 | 2455 | 2446 | 0654
4 77 0215 4 03 | 2456 | 0471 2456
5 0407 | 0410 | 0411 5 00
6 0412 | 3777 6 22 | 0646 | 0401 0646
7 34 0611 | 0562 7 22 | 2446 | 0403 | 2446
1040 3777 1312 [| 1140 22 | 2451 | 0447 | 2451
1 22 | 0551 [ 0401 | 0551 6 75 | 2446 | 2443 | 0635
2 22 | 2447 | 0403 | 2447 2 34 0657
3 75 | 2447 | 2445 | 0545 3 22 | 2454 | 2452 | 2454
4 22 | 0563 | 0403 | 0563 4 22 2451 | 2453 2451
5 22 | 0564 | 0403.| 0564 5 34 0640
6 22 | 2446 | 0403 | 2446 6 0403 2446
7 75 | 2446 | 0406 | 0543 7 0373 2510
1050 34 0612 | 1150 2450
1 0600 1 22 | 2450 | 2446 | 2450
2 3716 2453 2 35 | 2446 | 2444 | 0666
3 3746 2454 3 22 | 2446 | 0403 | 2446
4 77 0060 4 34 0662
5 02 | 0003 | 2453 | 2455 5 22 10472 ] 2444 | 2446
6 03 | 2455 | 2455 | 2455 6 22 | 2450 | 0473 | 2451
7 03 0002 | 0051 | 2457 7 26 | 2451 | 0113 2451
1060 02 | 2457 | 2454 | 2457 | 1160 0403 2452
1 03 | 2457 | 2457 | 2457 1 2451 2453
2 01 | 2455 | 2457 | 2455 2 2446 2454
3 0001 2452 3 26 | 2445 | 0113 | 2455
4 2455 0001 4 2457
5 77 0131 5 15 _ 2456
6 25 | 0002 | 0077 | 2455 6 16 | 2453 1 2454 | 0700
7 00 7 00
1070 2455 2456 [ 1170 01 | 2456 | 2442 | 2456
1 22 | 0404 | 2447 | 0603 1 22 | 2457 | 0403 | 2457
2 00 2 75 | 2457 | 2452 1 0712
3 22 0405 | 2447 | 0605 3 00
4 00 4 22 | 0704 | 0401 0704
5 2452 0001 5 22 2452 | 0403 2452
6 34 0600 | 0565 6 62 | 2451 | 0447 | 2451
7 03 | 2455 | 2456 | 0001 7 75 | 2452 | 2443 | 0672
1100 00 1200 34 0716
1 1312 0001 1 62 | 2454 | 0403 | 2454
2 77 0343 2 62 | 2453 | 2455 | 2453
3 04 | 0373 | 0002 | 1766 3 62 | 2455 | 0447 | 2455
4 22 | 0403 | 0403 | 2443 4 34 | 0677
5 0464 0704 5 22 {2450 | 2443 | 2450
6 0465 0726 6 22 | 2450 | 0474 | 2446
7 62 | 2443 | 0403 | 2444 7 2444 2451
1110 62 | 2444 | 0403 | 2445 [ 1210 2443 2452
1 0403 2446 1 0475 2453
2 0403 2447 2 2454
3 2450 3 15 2455
4 22 | 2450 | 0403 | 2450 4 16 | 2446 | 2453 | 0727
5 22 | 2447 | 2450 | 2447 5 00
6 75 | 2450 | 2444 | 0625 6 00
7 0466 2450 7 01 {2455 | 2442 2455 -
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Command

‘Address Command Address
1220 22 | 2454 | 0403 | 2454 § 1320 0454 2465
i 35 | 2454 | 2443 | 0737 1 0450 2464
2 22 | 0726 | 0460 | 0726 2 2446.
3 B2 | 2446 | 2452 | 2446 3 0407 2454
+ 62 | 2452 | 0403 | 2452 4 2464 1057
5 34 0725 5 0456 1046
6 22 | 2447 | 2445 | 2447 6 0457 1047
7 22 | 2447 | 0474 | 2446 7 2445
1230 0476 2454 § 1330 0407 2455.
1 15 2452 I ) 2454 -0001
2 2456 2 77 0060
3 2454 0746 3 0002 2456
4 16 | 2446 | 2453 | 0750 4 0003 2457°
5 00 . 5 3716 2460+
6 25 | 2442 | 0001 | 2442 6 3746 2461
7 00 7 02 | 2457 | 2460 | 2460
1240 01 2452 | 2442 | 2452 @ 1340 03 | 2460 | 2460 2460
i 22 | 2456 | 0403 | 2456 1 03 | 0051 | 2456 2462
2 35 | 2456 | 2451 [ 0757 2 02 | 2462 | 2461 | 2461
3 2 | 0746 | 0447 | 0746 3 03 | 2461 | 2461 | 2461,
4 62 | 2446 | 0403 | 2446 4 01 2460 | 2461 0001
5 34 0745 5 77 0131
6 22 | 2454 | 0460 | 2454 6 03 | 0002 | 3212 2462"
7 62 | 2446 | 0477 | 2446 7 0l 2455 | 2462 2455
1250 62 | 2451 | 0403 | 2451 § 1350 22 1046 | 0403 1046
i 75 | 2451 © | 0743 1 22 | 1047 } 0403 | 1047
2 22 | 2450 | 0473 | 2450 2 22 1057 | 0447 1057
3 26 | 2450 | 0126 | 2453 3 22 |2445 | 0401 | 2445
4 0500 2451 4 75 1 2445 | 2463 1046
5 16 | 2453 | 2451 | 0771 .5 25 | 2455 | 0077 2455
6 01 2455 | 2452 | 0001 6 2455 2500
7 77 0343 7 22 1067 | 0401 1067
1260 00 1360 01 2454 | 0451 2454
i 0403 2446 1 36 | 2454 | 0452 1035.
2 0501 | 2452 2 .30 | 1403 0371
3 22 | 0473 | 2447 | 2451 3 31 2500 2471
4 26 | 2451 | 0126 | 2451 4 20 | 2471 | 0446 3072 .
5 16 | 2452 | 2451 | 1000 5 30 | 1410 0372
6 16 1000 | 2450 | 1000 6 31 2500 2470
7 00 ‘ : 7 30 | 0410 0372
1270 92 | 2446 | 0403 | 2446 § 1370 71 2470
1 3 2446 | 2443 | 10056 1 35 | 2470 | 0446 1105
2 22 1600 | 0502 | 1000 2 33 | 0011 .
3 34 1000 3 34 1073
4 22 | 2443 | 0403 | 2443 4 22 | 1076 | 0453 | 1076
5 75 | 2443 | 0406 | 0616 5 22 | 1100 | 0453 1100
6 2443 6 62 | 2463 | 0401 | 2463
7 0444 2444 7 62 | 2465 | 0447 | 2465
1300 0403 2445 § 1400 22 | 2464 | 2465 2464
i 0503 1014 1 . 0455 1067
2 24406 2 22 | 2446 | 0401 2446
3 00 3 75 | 2446 | 0402 | 1034
4 92 | 2446 | 0403 | 2446 4 0504 2453
5 75 | 2446 | 2445 | 1026 5 0402 2455
6 22 1014 | 0403 | 1014 6 2445
7 62 | 1014 | 2444 | 1014 7 2453 2457
1316 29 | 2445 | 0403 | 2445 ¢ 1410 2446
] 22 | 2444 | 0444 | 2444 1 30 | 0410 0372
2 22 | 2443 1 0401 | 2443 2 31 2500 1 2470- .
B 75 | 2443 | 0402 | 1013 3 35 | 2470 | 0446 | 1127
4 34 1030 4 33 | 00i2 :
5 22 1014 | 0400 | 1014 5 34 1122
8 34 : 1014 6 2457 1130
7 0402 2463 7 00
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‘Address Command Address Command
1420 31 1766 | 2470 | 1520 0002 :
1 35 | 2470 |.0446 | 1135 1 0001 0001
D) 33 | 0013 2 72 | 0054 0257
3 34 1130 3 00
4 2454 4 31 0626 | 3777
5 24352 5 35 0046 | 3777 0264
6 03 2500 | 1766 | 2456 6 33 0016
7 4] 2456 | 2454 | 2454 7 34 0257
2430 22 1137 1 0460 | 1137 & 1530 15 0504
I 22 2452 | 0401 | 2452 1 0504 0001
2 75 2452 | 0461 | 1137 2 77 0060
3 03 2454 | 0451 | 2454 3 0003 0020
4 0462 1137 4 03 0002 | 0051 0021
5 22 1130 1 0453 | 1130 5 . 34 0626
6 22 2446 | 0401 | 2446 [§] 0001 1767
7 35 2446 | 0401 | 1157 7 01 0504 | 0220 0504
1440 76 2454 | 0463 | 1166 | 1540 22 0272 | 0222 0272
1 72 2454 0001 1 36 0504 | 0221 0265
2 77 0165 2 30 0410 0372
3 32 0002 3 31 2500 3777
4 33 0014 4 36 13777 | 0223 0303
5 34 1166 5 33 0017
6 02 |.0127 | 2454 | 2454 6 34 0276
7 76 2454 | 0463 | 1166 7 0505
1450 72 2454 0001 1550 03 1767 | 2500 0504
1 77 0165 1 01 0504 | 0505 0505
2 32 0002 2 22 0304 | 0224 0304
3 32 2446 3 75 0304 | 0225 0304
4. 33 0015 4 - 03 0220 ' 0505 0440
5 75 2446 | 2455 | 1130 5 22 0276 | 0236 0276
6 22 1122 | 0453 | 1122 6 0226 0304
7 22 2445 | 0401 | 2445 7 22 0310 | 0222 0310
1460 62 2455 1 0401 | 2455 | 1560 75 0310 | 0227 0276
1 22 2453 | 0453 | 2453 1| -~ 1 0506
2 75 | 2445 | 0402 | 1120 2 0504
3 34 0034 3 0507
4 273 1467 | 2145 | 2695 4 0510
5 03 1441 | 0131 | 0455 5 03 3212 | 0440 0511
6 0001 6 01 0511 | 0510 0510
7 77 3777 | 3777 | 3777 7 22 0321 | 0231 0321
1470 0001 | o001 | 1570 62 0231 | 0232 0231
1 03 2361 | 3072 | 0504 1 22 0507 | 0222 0507
2 03 1767 | 2500 | 0504 2 75 0507 | 0234 0321
3 03 0220 | 0505 | 0470 3 72 0510 3666
4 0030 | 0001 4 0510 0001
5 0030 | 0001 - 5 77 0165
6 0001 6 ‘32 0002
7 0030° 7 0235 0321
21500 . 0030 || 1600 22 0504 | 0232 0504
1 03 3212 | 0440 | 0511 1 22 0321 | 0504 0321
2 0373 2 0230 . 0231
3 30 0400 | 2469 3 62 0234 | 0222 0234
4 0002 4 22 0327 § 0222 0327
5 34 0433 5 22 0506 | 0222 0506
6 34 0365 6 75 0506 | 0233 | 0317
7 0500 0001 7 35 0045 0356
1510 0626 0500 1 1610 22 0237 | 0055 0346
1 0627 0501 1 3777
2 0001 2 00
3 0001 3 3l 0626 | 3776
4 0003 4 35 3776 | 0223 0353
5 02 3716 | 0500 | 0505 5 33 0020
5 02 3746 | 0501 | 0506 6 34 0346
7 ‘ 03 | 3666 | 0506 | 0506 7 - 22 {0346 | 0057 0346
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Address Command " Address Command

1620 22 3777 | 0222 | 3777 § 1650 22 0374 | 0232 0374
1 34 0365 1 22 0401 | 0232 0401
2 0363 2 22 0504 | 02.2 0504
3 35 0053 0433 3 75 0504 | 0233 0372
4 0053 0055 4 0507
5 0242 0353 5 0500 0001
& 0241 . 0427 6 77 0165
7 17 0346 | 0434 | (237 7 32 0002

1630 34 0344 | 1660 22 o411 | o232l oap
1 0503 1 22 0507 | 0522 | 0507
2 0626 0500 2 75 | 0507 | 0250 | o411
3 0627 0501 3 22 0503 | 0240 0503
4 0504 4 22 0366 | 0254 0366
5 0502 5 22 | 0367 | 0254 | 0367
6 02 3716 | 0500 | 0505 6 72 02351 0372
7 03 | 0505 | 0505 | 0505 | 7 0252 0374

1640 02 3746 | 0501 | 0506 § 1670 0253 0401
1 03 | 0506 ! 0506 | 0506 1 0243 0411
2 01 0506 | 0505 | 0001 2 75 0503 { 0055 366
3 77 0131 3 0244 0366
4 03 0002 | 0161 | 0506 4 0245 0367
5 03 3666 | 0506 | 0506 5 75 3777 | 0045 0346
6 01 | 0506 | 0502 | 0502 ]| 6 N 0357
7 22 0372 | 0252 | 0372 7 33 0021

1700 77 3777 | 3777

186

"~~~
et
A
N

|



10.
11.

12.

References

Kupradze, V.D. and M.A. Aleksidze. OCb odnom priblizhennom metode resheniya
nekctorykh granichnykh zadach (Cne Approximate Method for Solving Several
Boundary Problems). Reports of the Academy of Sciences, Georgian SSR,

No. 30, 1963.

Kupradze, V.D. Metody potentsiala v teorii uprugosti (Potential Methods
in the Theory of Elasticity). State Publishing House of Literature on
Physics and Mathematics. (Fizmatgiz), Moscow, 1963.

Kupradze, V.D. and M.A. Aleksidze. Metod funktsional'nykh uravmeniy dlva
priblizhennogo resheniya nekotorykh granichnykh zadach (Method of
Functional Equations for Approximate Solution te Several PRoundary Value
Problems). Vychisel. matem. i matem. fizika, Vol. 4, No. 4, 1964.

Koshlyakov, N.S., E.B. Gliner and M.M. Smirnov. Gsnovyye differentsial’
nyye uravneniya matematicheskoy fiziki (Fundamental Differential
Equations in Mathematical Physics). Fizmatgiz, 1962.

Berezin, M.S. and N.P. Zhidkov. Metody vychisleniva, t. 1. (Methods of
Computation, Volume 1), Fizmatgiz, 1959.

Kantorovich, L.V. and V.I. Krylov. Priblizhennyye metody vysshego analiza
(Approximate Methods of Higher Analysis). Fizmatgiz, 1962.

Kantorovich, L.V. and G.P. Akilov. Funktsional'nyy analiz v normirvovannykh
prostranstvakh (Functional Analysis in Normalized Spaces). Fizmatgiz,
1959.

Smirnov, V.I. Kurs vysshey matematiki, (Course in Higher Mathematics).
Vol. V. Fizmatgiz, 1959.

Smirnov, V.I. Kurs vysshey matematiki, (Course in Higher Mathematics).
Volume II, Fizmatgiz, 1961.

Akhiyezer, N.I. Lektsii’po teorii approksimatsii (Lectures on Approximation
Theory). Fizmatgiz, 1965. :

Khard, G.Kh. and V.V. Ragozinskiy. Ryady Fur'ye (Fourier Series).
Fizmatgiz, 1959.

Kartsivadze, I.N. O funktsiyakh, predstavlennykh v vide potentsiala

(Functions Represented in the Form cof a Potential). Reports of the
Computer Center, Academy of Sciences, Georgian SSR, Vol. IV, 1933,

187




14,

15.

16,

i7.

21,

23.

24,

Vekua, I.N. O polnote sistemy garmonicheskikh polinomov v prostranstve
{Completeness of a System of Harmonic Folynomials in Space). Doklady
AN SSSR, Vol. 90, No. 4, 1953.

Scbolev, $.L. Uravneniya matematicheskoy fiziki (Equations in Mathematical
Physics). State Publishing House of Technical and Theoretical Literature
{Gostekhizdat), 1954,

Kantorovich, L.V., V.I. Krylov and K.Ye. Chernin. Tablitsy dlya resheniya
granichnykh zadach (Tables for Solving Boundary Value Problems).
Fizmatgiz, 1956.

Mikhlin, $.G. Zamechaniva o koordinatnykb funktsiyakh (Comments on
Coordinate Functions). Izv. VUZov, Matematika, No. 5 (6), 1958.

Kupradze, V.D. O polnote nekotorykh klassov funktsii (Completeness of /143
Several Classes of Functions). Reports of the Academy of Sciences,
Georgian SSR, Vol. XXXVII, No. 2, 1965.

Fadeyev, D.K. and I.S. Sominskiy. Sb. zadach po vysshey algebre
{Collection of Problems in Higher Algebra). TFizmatgiz, 1961.

Mikhlin, S5.G. Ob ustoychivosti metoda Rittsa (Stablilty of the Ritz
Mathod). Dcklady AN, Vol. 135, No. 1, 1960.

Mikhlin, 8.G. Variatsionnyye metody v matematicheskoy fizike (Variational
Methods in Mathematical Physics). Fizmatgiz, 1957.

Kantorovich, L.V. and G.P. Akilov. TFumktsional'nyy analiz v normirovannykh
prostranstvakh (Functional Analysigé in Normalized Spaces). Fizmatgiz,
1959,

Aleksidze, M.A. Zamechaniya ob odnom priblizhennom metode resheniya
granichnykh zadach (Comments on One Approximate Method for Solving
Boundary Value Problems). Doklady AN SSSR, Vol. 173, No. 1, 1967.

Aleksidze, M.A. K voprosu o prakticheskom primenenii odnogo novogo prib- -
lizhennogo metoda (The Questicn of the Practical Application of Cne New
Approximate Method). Differential'nyye uravneniya (Differential Equations).
Vol. 2, NWo. 12, 1966.

Aleksidze, M.A. O polnote nekotorykh sistem funktsiy (Completeness of
Several Systems of Functions). Differentsial’nyye uravneniya (Differential
Equations). Vol. 3, No. 10, 1967.

Aleksidze, M.A. O ryadakh po neortogonal'nym sisterem funktsiy (Series of
Nonorthogonal Systems of Functicns). Vych. mat. i mat. fizika, Vol. 8,
No. 5, 1968.



26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Aleksidze, M.A. O priblizhennom reshenii nekotorykh beskonechnykh sistem
uravneniy (Approximate Solution to Several Infinite Systems of Equations).
Doklady AN SSSR, Veol. 179, No. 5, 1926€8.

Aleksidze, M.A. and N.L. Lekishvili. Resheniye ploskoy zadachi Dirikhle
metodom obobshchennykh ryadov Fur'ye (Solution to the Two-Dimensional
Dirichlet Problem by the Method of Generalized Fourier Series). Biblio-~
teka programm dlya EVM BESM-2 (Library of Programs for the BESM-2
Electronic Computer). State Institute for Standard Experimental Planning
and Technical Research (Giprotis). Moscow, 1967.

Aleksidze, M.A. and N.M. Arveladze. Resheniye zadachi Dirikhle dlya
uravneniya Laplasa metodom funktsional'nykh uravneniy (Solution to the
Dirichlet Problem for the Laplace Equation by the Method of Functional
Equations). (Library of Programs for the BESM-2 Electromic Computer),
Giprotis, Moscow, 1967.

Aleksidze, M.A. and N.L. Lekishvili. Vychisleniye koeffitsiyentov ortonor-
malizatsii matrichnym metodom (Computing the Coefficients of Orthonormal-
ization by the Matrix Method). (Library of Programs for the BESM-2
Electronic Computer), Giprotis, Moscow, 1967.

Aleksidze, M.A. and N.M. Arveladze. Vychisleniye koeffitsientov ortonoxr-
malizatsii (Computing the Coefficients of Orthonormalization). (Library
of Programs for the BESM-2 Electronic Computer), Giprotis, Moscow, 1967.

Aleksidze, M.A. and K.V. Pertaya. Universal'nyye programmy resheniysz
zadachi Dirikhle dlya uravneniy Laplasa i Puassona (General-Purpose
Programs for Solving the Dirichlet Problem for Laplace and Poisson
Equations). Metsniyereba Press, Tbilisi, 1966.

Aleksidze, M.A. and K.V, Pertaya. Resheniye pervoy vanutrenney granichnoy
zadachi teorii garmonicheskikh funktsiy metodom setok (Solution te the
First Internal Boundary Value Problem in the Theory of Harmonic Functions
by the Net-Point Method). (Library of Programs for the BESM~2 Electronic
Computer), Giprotis, Moscow, 1967.

Aleksidze, M.A., N.M. Arveladze, N.L. Lekishvili and K.V. Pertaya. O
reshenii granichnykh zadach s pomoshch'yu neortogonal'nykh ryadov (Solution
to Boundary Value Problems Using Nonorthogonal Series). Reports of the
Academy of Sciences, Georgian SSR, 1968.

Kantorovich, L.V. Priblizhennoye resheniye funktsional'nykh uravneniy
(Approximate Solution to Functional Equations). Uspekhi mat. nauk,
Vol. XI, No. 6, 1956, p. 72.

Lyumis, L. Introduction to Abstract Harmonic Analysis. Foreign Literature
Press, Moscow, 1956.

189




36.

38.

40,

4%,

42,

43.

by,

45,

46.

47,

190

Cyunter, N.M. Teoriya potentsiala i yeyo primeneniye k osnovnym granichnym
zadacham matematicheskoy fiziki (Potential Theory and its Application to
Basic Boundary Value Problems in Mathematical Physics). Gostekhizdat,
Moscow, 1953.

Kantorovich, L.V. O priblizhennom vycheslenii nekotorykh tipov opredele-
nnykh integralov i drugikh primeneniyakh metoda vydeleniya osobennostey
(Approximate Computation of Several Types of Specified Integrals and
Other Applications of the Method of Isolating Discontinuities). Matem.
sb., Vol. 41, No. 2, 1934.

Kreyn, M.G. O basisakh Bari prostyanstva Gil'berta (Barry Bases of Hilbert
Space). Uspekhi matem. nauk., Vol. 12, No. 3, 1957, p. 75.

Tikhonov, A.N. Ob ustoychivykh metodakh summirovaniya ryadov Fur'ye
(Stable Methods for Summing Fourier Series). Doklady AN SSR, Vol. 156,
No. 2, 1964.

Kachmazh, S. and G. Shteyngauz. Teoriya ortogonal'nykh ryadov (Theory of /144
Orthogonal Series). Fizmatgiz, Moscow, 1958. E—

Lyusternik, L.A. and V.I. Sobolev. Elementy funktsional'nogo analiza
(Elements of Functional Analysis). Gostekhizdat, Moscow, 1951.

Fadeyeva, V.N. Vychislitel'nyye metody lineynoy algebry (Computational
Methods for Linear Algebra). Moscow-Leningrad, 1950.

Vzorova, A.I. Tablitsy dlya resheniya uravneniya Laplasa (Tables for
Solving the Laplace Equation). Moscow, 1957.

Mikhlin, S.G. Chislennaya realizatsiya variatsionnykh metodov (Numerical
Application of the Variational Methods). Nauka Press, 1965.

Tikhonov, A.N. O nekorrektnykh zadachakh lineynoy algebry i ustoychivom
metode ikh resheniya (Improper Problems in Linear Algebra and a Stable
Method for Solving Them). Doklady AN SSSR, Vol. 163, No. 3, 1965.

Muskhelishvili, N.I. Singulyarnyye integral'nyye uravneniya (Singular
Integral Equations). Fizmatgiz, 1962.

Klabukova, L.S. O priblizhennom metode resheniya zadachi Rimana-Gil'berta
v mnogosvyaznoy oblasti (An Approximate Method for Solving the Riemann-
Hilbert Problem in a Multiply Connected Region). Vychislitel'naya mate-
matika, No. 7, 1961.

Kveselava, D.A. O primenenii integral'nykh uravneniy v teorii konformmykh
otobrazheniy (Use of Integral Equations in the Theory of Conformal
Mappings). Reports of the Computer Center, Academy of Sciences,

Georgian SSR, Vol. 2, 1961



49.

50.

51.

52.

53.

54.

55.

56.

Tozoni, 0.V. Matematicheskiye modeli dlya rascheta elektricheskikh 1
magnitnykh poley (Mathematical Models for Computing Electric and Magnetic
Fields). Kiev, 1964.

Parodi, M. Localization of Characteristic Matrix Numbers and its
Application. Foreign Literature Press, 1960.

Klabukova, L.S. Priblizhennyy metod resheniya zadachi Puankare {(4n
Approximate Method for Solving the Poincaré Problem). Vychislitel'naya
matematika, Collection No. 3, Press of the Academy of Sciences USSR, 1958,

Brello, N. Osnovy klassicheskoy teorii potentsiala (Fundamentals of Clas-
sical Potential Theory). Mir Press, 1964.

Vekua, I.N. Obobshchennyye analiticheskiye funktsii (Generalized Analytical
Functions). Moscow, 1959.

Volkov, Ye.A. K resheniyu metodom setok uravneniy ellipticheskogo tipa
s krayevymi usloviyami, soderzhashchiye proizvodnyye (Using the Net~Point
Method to Solve Elliptical-Type Equations with Boundary Conditions
Containing Derivatives). Doklady AN SSSR, Vol. 102, No. 3, 1955,

Volkov, Ye.A. O metode setok dlya krayevykh zadach s kosoy i normal’noy
proizvodnoy (The Net-Point Method for Boundary Value Problems with
Directional and Normal Derivative). Vychislitel'naya matematika i
matematicheskaya fizika, Vol. 1, No. 4, 1961.

Ostrovski, A. Sur la determination des bornes, inferieures pour une class
des determinants (Determination of the Lower Bounds for One Class of
Determinants). Bull. Sci. Math, No. 61, 1937.

Translated for National Aeronautics and Space Administration under Contract No.
NASw 2035, by SCITRAN, P.O. BOX 5456, Santa Barbara, California, 93103.

NASA-Langley, 1871 ~ 19
Coml., Newport News, Va.

191









